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ABSTRACT

The performance of conventional radar is foreseen to be im-
proved by the implementation of compressive sensing (CS).
CS is based on the assumptions of sparsity and incoherence.
Here we connect the incoherence of the sensing matrix and
the autocorrelation of a radar waveform, and use them as a
measure for the design of an optimal waveform in CS based
radar. We demonstrate the performance of the waveforms
through both matched filtering and sparse signal recovery.

Index Terms— radar, compressive sensing, waveforms,
optimization

1. INTRODUCTION

Compressive sensing (CS) provides a new paradigm in data
acquisition and signal processing in radar, based on the as-
sumptions of sparsity of the unknown signal and the inco-
herence the transmitted waveform. The recovery of signals
is possible from a reduced number of measurements because
of the sparsity. Several works investigate CS radar but with-
out taking into account the effect of the radio frequency (RF)
system components on the incoherence of the received sig-
nal [1, 2]. Moreover, most works are concentrated on the use
of random signal acquisition rather than deterministic, which
increases the complexity of the hardware. In this work, we
investigate which deterministic waveform(s) would be opti-
mal in CS radar, based on their incoherence, as well as the RF
transmission and reception constraints, e.g., required band-
width Bf to match the initial incoherence and ease of gener-
ation, transmission and reception. We illustrate this for the
basic radar case of range-only estimation.

In Section 2, we introduce our data model along with the
requirements for CS radar. Several deterministic waveforms
with good autocorrelation properties are presented in Sec-
tion 3, where we discuss their feasibility in CS radar. In Sec-
tion 4, the RF system is presented and sparse signal recovery
(SSR) is introduced. Section 5 and Section 6, overview our
findings on the optimization of the incoherence of the wave-
forms, and our simulation results. Conclusions are drawn in
Section 7.

2. CS RADAR DATA MODEL

Assume a monostatic radar setup, where the measurements
y = r + e at the receiver are modeled as the radar echoes r in
Gaussian noise e. If we consider a radar scene x, containing
only ranges, then the received echo r in CS is given by the
linear model

r = Sx, (1)

where r contains the contributions of all targets and S is the
sensing matrix. Each entry of x occupies a range cell with
size ∆τ = 1/fs, where fs = 1 is the reference sampling
frequency of s(t). S has Toeplitz structure i.e., its columns
are shifted copies of s[n] = s(n/fs), n = 0, 1, . . . , L− 1:

S =


s[0] · · · 0

...
. . .

s[L− 1] s[0]
. . .

...
0 · · · s[L− 1]


(N+L)×N

. (2)

Each shift , k = 0, 1, . . . , N − 1, in (2), corresponds to a
time delay τk = k/fs, and is related to the target range. The
range profile x can be assumed sparse, having only K < N
significant components, where K is the number of targets.

2.1. Incoherence and autocorrelation

The fundamental measure of the quality of a radar wave-
form is the ambiguity function (AF), which usually is a
two-dimensional representation of the cross-correlation of
the waveform with its shifted copies in time and Doppler. For
zero-Doppler, the AF is equivalent to the aperiodic autocor-
relation function (ACF) of the signal s[n]:

A[k] =
1

L

L−1−k∑
n=0

s[n]s∗[n− k], k = 0, 1, . . . , N − 1. (3)

With CS, the unknown signal x can be recovered, under
the conditions that x is sparse, and the measurement matrix S
is “sufficiently” incoherent [3]. The incoherence is essential
for the reconstruction algorithms and the number of measure-
ments to be taken [3]. There are several measures for the
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coherence of a matrix: the mutual coherence, the restricted
isometry property (RIP) and the null-space-property (NSP),
with the last two being more difficult to calculate.

The mutual coherence of a matrix S is given by the
largest inner product of the columns of S, denoted sk, k =
1, 2, . . . , N and normalized, i.e. ||sk||2 = 1:

µ(S) = max
i 6=k
|〈si, sk〉|. (4)

Assuming S as in (2), there is clearly a connection be-
tween µ(S) from (4) and the ACF of the waveform from (3).
The mutual coherence can be viewed as the largest off-
diagonal value of SHS, where (·)H denotes Hermitian trans-
pose. Furthermore, due to the Toeplitz structure of S, the
mutual coherence µ(S) is related to the ACF. Each column of
SHS is the ACF of sk at a certain delay τk. In the context of
radar, µ(S) is the highest sidelobe in the ACF.

3. OPTIMAL WAVEFORMS

Conventional pulse radar would transmit a linear frequency
modulated (LFM) pulse s[n], n = 0, 1, . . . , L− 1:

s[n] = e
jπn2Bs

L /
√
L, (5)

where the pulse length L = 100 in our analysis.
The sampling frequency fs is normalized to 1, and we

choose a LFM pulse with a double sided bandwidthBs = 0.8,
as the reference waveform. The theoretical sidelobe level of
the LFM is −13.4 dB [4].

Since the power amplifier in the radar transmitter is oper-
ated in saturation (Class C), all amplitude modulation of the
waveform is unwanted, and if allowed can cause signal clip-
ping and unwanted distortion. From the theoretically optimal
waveforms with constant unit amplitude and good correlation
properties (e.g. [1] and [2]), we choose two (discrete) phase
sequences, namely the cubic Alltop sequence and the Björck
sequence. The cubic Alltop sequence origins from a continu-
ous phase signal, while the Björck sequence is a truly discrete
binary sequence.

In [5], Alltop defines a cubic phase sequence:

s[n] = e
j2πn3

L /
√
L, 0 ≤ n ≤ L− 1, (6)

with sidelobes of L−1/2 for the periodic ACF and sidelobes
close to this value for the aperiodic case.

The Björck sequence falls in the family of CAZAC (con-
stant amplitude zero autocorrelation) sequences and is of
prime length L. The Björck sequence is known to have a zero
periodic ACF and nearly zero aperiodic ACF with uniformly
low sidelobes [2]:

s[n] = e
j2π[( nL )] arccos

(
1

1+
√
L

)
/
√
L, 0 ≤ n ≤ L− 1, (7)

where L ≡ 1(mod 4) prime and
[(
n
L

)]
the Legendre symbol,

and taking values ±1.
The cubic Alltop and Björck sequence are promising for

CS radar implementation, as their correlation sidelobes are
flat, with no particular sidelobe structure. The ACFs are
shown in Fig. 1, where the clear advantage of a narrower
mainlobe over the conventional LFM is notable.

Fig. 1. ACF - Linear chirp, cubic Alltop and Björck.

4. RF SYSTEM

We model the radar system as a general digital RF system
as shown in Fig. 2. A typical realization of such a system
will require a fast DAC, ADC and a DDC (digital down con-
verter). We concentrate on the digital band-pass filters (BPFs)
and Hilbert transform. The power amplifiers and the analog
filters are not included at this point.

Fig. 2. Simplified block scheme of a generalized RF trans-
mitter and receiver

After the initial sequences are generated at rate fs = 1
they are interpolated to a new sequence ŝ[m], at rate fs,IF =
M , in order to allow for digital up-conversion to intermediate
frequency (IF). The initial Alltop sequence is linearly interpo-
lated ŝ[m] = (s[bm/Mc+1]−s[bm/Mc])(mmodM)/M+
s[bm/Mc] and the binary Björck is put on a rectangular pulse
shape ŝ[m] = s[bm/Mc] in order to keep it binary , where

2
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m = 0, 1, . . . ,ML − 1, n = 0, 1, . . . , L − 1 and b·c de-
notes the floor function. After the up-conversion the resultant
signal is filtered to constrain its bandwidth and to filter any
harmonics from the mixing.

The receiver basically does the inverse of the transmitter,
starting with ADC which samples r(t) at rate fs,IF = M .
We use Hilbert transform to recover the complex signal and
another low-pass filter (LPF) which precedes the final down-
sampling to the reference rate fs = 1.

The double sided bandwidth Bf of all filters is tunable
and relative to the reference sampling frequency fs = 1.

Fig. 3. Aperiodic ACF of a cubic Alltop sequence as a func-
tion of the double sided filter bandwidth Bf .

Fig. 4. ACF of a Björck seqence as a function of double sided
filter bandwidth Bf .

4.1. Sparse signal recovery (SSR)

In traditional radar processing, the matched filter (MF):

xMF = SHy (8)

is the optimal test statistics for a likelihood based detection
and estimation.

Several SSR methods [6] are available for implementation
in CS radar. We prefer a Bayesian approach, implemented as
a complex fast Laplace (CFL) algorithm because it is robust to
noise and is executed in nearly real time (FL from [7] adapted
for complex signals in [8]). The Bayesian approach leads to
an SSR estimator:

xSSR = arg min
x
{|y − Sx|2 + λ||x||1}, (9)

where the parameter λ balances between the noise energy and
the sparsity.

5. OPTIMIZATION OF THE ACF

Although already good, it is worth trying to optimize the ACF
of the waveforms even further. The problem of optimization
of the ACF of a sequence is comparable to minimizing the
Frobenius norm:

min ||SHS− I||2F , (10)

where I is an identity matrix, S is Toeplitz and given by (2).
The problem of designing unimodular sequences with low
correlation has already been studied, and a particular algo-
rithms for dictionary optimization are provided in [9, 10].
Due to the high complexity of solving the quadratic func-
tion (10), both algorithms tackle the problem of minimizing
the average coherence of S which is given by the integrated
sidelobe level (ISL) [9, 10] of the ACF:

ISL =

L−1∑
k=1

|A[k]|2. (11)

Fig. 5. Optimized waveforms
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We use the CAP (cyclic algorithm - pruned) method pre-
sented in [10], since it shows to preserve both the structure of
the S matrix and the general phase behavior of the initializing
sequence.

6. RESULTS

6.1. RF band pass filter effects

The effect of the RF system on the ACF of the optimal wave-
forms defined in Section 3 is investigated in this subsection.

An LFM with L = 100, and Alltop and Björck with L =
101 are analyzed. We start with Bf = 1 for the cubic Alltop
and we observe an increase of the sidelobes of about 4 dB.
Additionally, the main lobe is wider due to the filtered high
frequency components of the waveform, as shown in Fig. 3.
By increasing Bf = 2, the ACF of the received cubic Alltop
matches the initial one well.

For the Björck sequence the required Bf for good recep-
tion, e.g., without increase of the sidelobe level, is Bf = 1 as
shown in Fig. 4, since the transmitted binary sequence can be
recovered at the receiver.

6.2. Optimization results

Here, we present some results of the optimization algorithm
from Section 5. Optimization of the initial waveforms by
means of minimizing the ISL as in (11), clearly results in a
decrease of the sidelobes as shown in Fig. 5. The sinc func-
tion structure of the autocorrelation of the LFM is lost and
additionally there is a decrease in the width of the main lobe.
For the optimized cubic Alltop and Björck the sharp response
at zero delay is contained and a couple of dBs are gained in
the sidelobe level.

6.3. Sparse recovery

In Section 6.1 we showed that with properly selected Bf the
received waveform does not experience increase in the ACF
sidelobes. In this section, we are showing the performance
of the initial waveforms through SSR and MF, without taking
into account the effects of the RF system.

We are showing a comparison between xMF in (8) and
xSSR in (9), approximated by the CFL. For a threshold, as
in [11], with a probability of false alarm PFA = 10−6, we
present a comparison between the performance of the differ-
ent waveforms. The SNR is defined per target.

The weak target cannot be distinguished from the noise or
the sidelobes in the conventional MF based detection. In such
a case the SSR is an improvement of the MF since it uses the
entire contribution of the ACF instead of just the MF peaks
above a predefined threshold, as shown in Fig. 6.

Fig. 7. Recovery of two targets (16 dB) in noise separated
by 1/2 reference cell, averaged over 10 noise realizations and
normalized by the target SNR. The dashed red lines indicate
the MF threshold (at PFA = 10−6).

The cubic Alltop sequence is compared to the LFM in a
high resolution test (∆τ = 1/(Qfs), Q = 4), where S is
constructed as a (N + L− 1)×NQ matrix with the (n, k)th

element given by:

s(n/fs − k/(Qfs)), (12)

where s(t) is transmitted in the time interval [0, L/fs), n =
0, 1, . . . N + L − 1, and k = 0, 1, . . . , QN − 1. In such a
case, S has a block Toeplitz structure and the system in (1) is
under-determined.

In Fig.7 we present a zoomed plot around the targets.
No contributions are present in other regions of the radar
scene. The Alltop sequence outperforms the LFM, as shown
in Fig. 7, due to the wider mainlobe of the LFM. Furthermore,
the specific sinc structure in the ACF of the LFM results in
confusion between the main lobe contribution and some of
the sidelobes, and the two targets cannot be resolved as shown
in Fig. 7.

7. CONCLUSIONS

The proper choice of waveform is essential in CS radar. In
this work, we showed that the mutual coherence of the mea-
surement matrix S is related to the ACF of the transmitted
waveform, due to the specific structure in S. We investigated
several deterministic waveforms which show optimal behav-
ior in CS radar taking into consideration not only the wave-
form properties itself, but also the effect of BPF width Bf in
the RF system. We showed that the cubic Alltop sequence re-
quires a wider bandpass filters (Bf ≈ 2) so that no increase of
the sidelobes appears. The Björck sequence can be transmit-
ted on a rectangular pulse shape and recovered with a filter of
Bf = 1. The coherence of the investigated waveforms can be
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Fig. 6. Recovery of two targets in noise (SNR = 30 dB and SNR = 16 dB), separated by 10 range cells and averaged over 10
noise realizations; normalized by the strongest target SNR. The dashed red lines indicate the MF threshold (at PFA = 10−6).

reduced even further with an optimization algorithm, which
minimizes the average coherence, given by the ISL metric.

SSR allows resolving weak targets (even as weak as the
sidelobes of the ACF) with a proper selection of the trans-
mitted waveform, and threshold for a given PFA. Despite
the larger required transmission bandwidth Bf , our prefer-
ence for an optimal waveform is the cubic Alltop sequence,
because it outperforms the conventional LFM pulse in resolu-
tion, and is more flexible than the Björck sequence to generate
in terms of length (no requirement for prime length).

In future work, the behavior of the optimized wave-
forms will be investigated further through the transmission-
reception chain. Furthermore, the reconstruction performance
will be investigated under compression of the received data,
and a bound for the number of required measurements for a
given number of targets will be derived.
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