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ABSTRACT

In this paper, we generalize the Discrete Extended Kalman

Filter (D-EKF) to the case where the state and the observa-

tions evolve on Lie group manifolds. We propose a new fil-

ter called Discrete Extended Kalman Filter on Lie Groups

(D-LG-EKF). It assumes that the posterior distribution of the

state is a concentrated Gaussian distribution on Lie groups.

Our formalism yields closed-form equations for both non-

linear discrete propagation and update of the distribution pa-

rameters based on the likelihood. We also show that the D-

LG-EKF reduces to the traditional D-EKF if the state evolves

on an Euclidean space. Our approach leads to a systematic

methodology for the design of filters, which is illustrated by

the application to a camera pose estimation problem. Results

show that the D-LG-EKF outperforms both a constrained D-

EKF and a D-EKF applied on the Lie algebra of the Lie group.

Index Terms— Extended Kalman Filter, Lie Groups,

Discrete time filtering, Filtering on manifolds

1. INTRODUCTION

This paper deals with the estimation of a state evolving

on a manifold 1. It was motivated by the need of a systematic

methodology for the design of filters in the context of local-

ization from wearable camera for personal activity lifelog [1]

where both variables to estimate and measurements evolve on

Lie groups. Several works tried to extend discrete Euclidean

filtering algorithms to manifolds. For example, particle filters

for states evolving on a Riemannian, Stiefel or Grassmann

manifolds have been proposed. However, in our application,

the computational complexity of a particle filter (induced by

the particle evolution on the manifold and the highly peaked

likelihood) was prohibitive. That is the reason why, in this

work, we focus on Kalman filtering and extend the Discrete

Extended Kalman Filter (D-EKF) [2] defined for a state and

measurements evolving on Euclidean spaces to the case of a

state and measurements evolving on matrix Lie groups. Typi-

cal examples of such groups include rotation matrices SO (3),

unitary quaternions SU (2), rigid-body motion SE (3), homo-

graphies SL (3) and invertible matrices G L (3).

1. The research leading to these results has received funding from the

European Community’s Seventh Framework Programme (FP7/2007-2013)

under grant agreement 288199 - Dem@Care

A large amount of works modeling the state on a Lie

group have dealt with the specific groups SO(3) , SU (2)

or SE (3). Among them [3] and [4] modified the unscented

Kalman filter to estimate a unitary quaternion. In [5] an al-

gorithm able to estimate the trajectory of a state evolving on

SE (3) is described. In [6], an Invariant Momentum-tracking

Kalman Filter is derived to estimate a unitary quaternion and

an angular momentum vector. Aside from these specific al-

gorithms, a generic constrained filter [7] could be applied to

this problem, by embedding the state in a vector space and

enforcing an equality constraint to ensure the state remains

on the embedded Lie group manifold. This approach does not

take the geometry of the Lie group into account in an intrinsic

manner and may lead to degenerated configurations as we

will discuss later.

In contrast to these approaches, this paper introduces a

framework that is both generic and adapted to Lie group ge-

ometry. It can be tailored to specific applications by designing

the Lie group on which the state is defined. Our formalism

is also able to take into account measurements evolving on a

Lie group. Assuming the posterior distribution of the state is a

concentrated Gaussian on Lie groups, we propose a tractable

formulation of discrete error propagation and update that we

call Discrete Extended Kalman Filter on Lie groups (D-LG-

EKF). Moreover, we show that the D-LG-EKF reduces to the

D-EKF if the state evolves on an Euclidean space.

The rest of the paper is organized as follows : Section 2

introduces some Lie group and Lie algebra notions as well as

the concentrated Gaussian distribution on Lie group formal-

ism. The D-LG-EKF theory is presented in Section 3 and the

differences with the D-EKF as well as the applicability of our

formalism are discussed. In section 4, the D-LG-EKF perfor-

mances are illustrated on a camera pose estimation problem.

Finally the conclusion and future research directions are pro-

vided in Section 5.

2. PRELIMINARIES

2.1. Lie Groups and Lie Algebras

In this section we give the definitions and basic properties

of matrix Lie groups and Lie algebra. For a detailed descrip-

tion of these notions the reader is referred to [8]. We focus

on matrix Lie groups since they cover most Lie groups of

interest in signal and image processing. A Lie group G is a

EUSIPCO 2013 1569743485
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group which has also the structure of a smooth manifold such

that group composition and inversion are smooth operations.

If G is a matrix Lie group, then g ∈ G ⊂ Rn×n and its oper-

ations are matrix multiplication and inversion with the iden-

tity matrix as identity element I d n×n . Note that an Euclidean

space is a trivial matrix Lie group. The matrix exponential

e x pG and matrix logarithm l o gG mappings establish a local

diffeomorphism between an open neighborhood of 0n×n in

the tangent space at the identity Te G , called the Lie Algebra

g, and an open neighborhood of I d n×n in G . The Lie Alge-

bra g associated to a p -dimensional matrix Lie group is a p -

dimensional vector space defined by a basis consisting of real

matrices E i for i = 1. . . p . Hence there is a linear isomorphism

between g and Rp that we denote as follows : [·]∨
G

: g→ Rp

and [·]∧G : Rp → g. For example let a ∈ g ⊂ Rn×n , then we

have [a]∨
G
= a ∈ Rp . Thus we can define a basis [E i ]

∨
G
= e i

where {e i } is the natural basis of Rp and a=
∑p

i=1
a i E i with

a =
�

a 1 . . .a p

�T
. We also define M ⊂ G and S ⊂ Rp as the

sets on which e x pG and l o gG are bijective functions. The

two previous notions are summarized in Fig. 1.

M ⊂G ⊂Rn×n

l o g G

→

←
ex pG

g⊂Rn×n

[·]∨G
→

←
[·]∧

G

S ⊂Rp

Fig. 1. Mappings between the Lie group, its Lie algebra and

Rp

Lie groups are usually non-commutative. The two follow-

ing operators capture this property (X ∈G , a ,b ∈Rp ) :

– The Adjoint representation of G on Rp is defined as the

operator AdG : AdG (X )a =
�

X [a ]∧G X−1
�∨

G
– The adjoint representation ofRp onRp is defined as the

operator a dG : a dG (a )b =
�

[a ]∧
G
[b ]∧

G
− [b ]∧

G
[a ]∧

G

�∨

G
Finally let’s introduce the Baker-Campbell-Haussdorff for-

mula which expresses the group product directly in Rp :

�

l o gG

�

e x pG

�

[a ]∧
G

�

e x pG

�

[b ]∧
G

���∨

G

= a +b +O
�

|a ,b |2
�

(1)

The following related formula will be useful for our deriva-

tions :

�

l o gG

�

e x pG

�

[−a ]∧
G

�

e x pG

�

[a +b ]∧
G

���∨

G

= a +ΦG (a )b +O
�

|b |2
�

(2)

where ΦG (a ) =
∑∞

m=0

(−1)m

(m+1)!
a dG (a )

m .

2.2. Concentrated Gaussian Distribution on Lie Groups

In this section we introduce the concept of concentrated

Gaussian on Lie groups [9, 10] as a generalization of the nor-

mal distribution in Euclidean space which is used in the D-

EKF formalism. In order to define such a distribution, the con-

sidered Lie group has to be a connected unimodular matrix

Lie group. Henceforth, in the rest of the paper, when refer-

ring to Lie groups, we will consider this assumption to hold.

Note that this is the case of most Lie groups of interest such as

SO (3), SE (3), SL (3), Rn ... From [9] the following distribution

can be defined :

ρ (X ) =αe
− 1

2

�

[l o g G (X )]
∨

G
P−1[l o g G (X )]

∨

G

�

(3)

Where α is a normalizing constant, X ∈ G , G is a p -

dimensional Lie group and P is a definite positive matrix.

Probability of elements outside of M is set to zero. Let’s de-

fine ε as follows : ε =
�

l o gG (X )
�∨

G where ε ∈ S. When ρ (X )

is tightly focused around the group identity (i.e the maximum

of the eigenvalues of P is small), the distribution of ε can

be approximated by a classical Euclidean Gaussian distribu-

tion defined on Rp of mean 0p×1 and covariance matrix P :

NRp

�

0p×1, P
�

. In this case, the distribution of X is called a

concentrated Gaussian distribution on G around the identity.

It can be moved around µ ∈ G using the left action of the

Lie group, producing a concentrated Gaussian on G centered

around µ (denoted X ∼NG

�

µ, P
�

) :

X =µe x pG

�

[ε]∧G

�

(4)

µ will be called the mean of X , ε can be seen as a Lie alge-

braic error of mean 0p×1 and covariance P. Figure 2 provides

a graphical interpretation of the transfer of the probability dis-

tribution from ε to X . Such a distribution allows us to describe

the covariance of the state in Rp and hence using Euclidean

tools while being invariant w.r.t the left action of the group on

itself.

G G

Lµ

µµ

I d n×n I d n×n

e x pG

g

NRp

�

0p×1, P
�

NG

�

µ, P
�

NG (I d n×n , P)

Fig. 2. Concentrated Gaussian on Lie groups

3. DISCRETE EXTENDED KALMAN FILTER ON

LIE GROUPS THEORY

The Discrete Extended Kalman Filter (D-LG-EKF) the-

ory is built upon the formalism of the concentrated Gaussian

distribution on Lie groups.

2
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3.1. System Model

Let the system state be modeled as satisfying the follow-

ing equation :

Xk = f (Xk−1, u k−1, n k−1)

= Xk−1 e x pG

�

[Ω(Xk−1, u k−1)+n k−1]
∧
G

�

(5)

where Xk ∈G is the state we wish to estimate at time k and

G is a p -dimensional Lie group. u k−1 ∈ R
w corresponds to a

control input and n k−1 ∼ NRp

�

0p×1, Rk−1

�

is a white Gaus-

sian noise. Ω : G ×Rw →Rp is a non-linearC 2 function.

We also consider discrete measurements on a q -dimensional

Lie group G ′ :

z k = h (Xk )e x pG ′
�

[wk ]
∧
G ′

�

(6)

where z k ∈ G ′, h : G → G ′ is a C 1 function and wk ∼

NRq

�

0q×1,Qk

�

is a white Gaussian noise.

3.2. Proposed solution

We assume the state posterior distribution to be a concen-

trated Gaussian distribution on Lie groups : p (Xk |z 1, . . . , z l )≈

NG

�

µk |l , Pk |l

�

. We focus on l = k −1 (propagation) and l = k

(update). Therefore, the aim of the D-LG-EKF is to propagate

and update the distribution parameters µk−1|k−1 and Pk−1|k−1.

In our formalism, µ is the state estimate. The maximum of the

eigenvalues of the white Gaussian noises covariance matrices

considered in Section 3.1 are assumed to be small in order to

apply the concentrated Gaussian distribution formalism.

3.2.1. Propagation

We assume that the state posterior distribution at time

k −1 is represented byNG

�

µk−1|k−1, Pk−1|k−1

�

. Therefore, the

aim of this section is to show how to propagate µk−1|k−1 and

Pk−1|k−1 between two consecutive sensor measurements.

Mean Propagation The state estimate is propagated using

the state model without noise :

µk |k−1 =µk−1|k−1e x pG

�
�

Ω̂k−1

�∧

G

�

(7)

where Ω̂k−1 =Ω
�

µk−1, u k−1

�

.

Covariance Propagation In order to propagate the covari-

ance, we study the Lie algebraic error propagation. The state

error on G can be expressed as follows :

e x pG

�
�

εk |k−1

�∧

G

�

=µ−1

k |k−1
Xk

= e x pG

�
�

−Ω̂k−1

�∧

G

�

e x pG

�
�

εk−1|k−1

�∧

G

�

e x pG

�

[Ω(Xk−1, u k−1)+n k−1]
∧
G

�

(8)

LinearizingΩ in µk−1|k−1 and using equations (1) and (2), one

can obtain the following Lie algebraic error propagation :

εk |k−1 =Fk−1εk−1|k−1+ΦG

�

Ω̂k−1

�

n k−1+O
�
�

�εk−1|k−1, n k−1

�

�

2
�

(9)

where

Fk−1 =AdG

�

e x pG

�

−Ω̂k−1

��

+ΦG

�

Ω̂k−1

�

Ck−1 (10)

and

Ck−1 =
∂

∂ ε
Ω
�

µk−1|k−1e x pG

�

[ε]∧
G

�

, u k−1

�

|ε=0 (11)

As in the D-EKF case, terms in O
�
�

�εk−1|k−1

�

�

2
�

are neglected.

Moreover, we do not consider terms in O
�
�

�εk−1|k−1, n k−1

�

�

2
�

since, because of the concentrated Gaussian assumption, n k−1

is assumed to be small.

Under these conditions : E
�

εk |k−1

�

=mk |k−1 = 0p×1. Fi-

nally, we obtain the following covariance propagation for-

mula :

Pk |k−1 =E
h

εk |k−1ε
T
k |k−1

i

=Fk−1Pk−1|k−1F
T
k−1
+ΦG

�

Ω̂k−1

�

Rk−1ΦG

�

Ω̂k−1

�T
(12)

Propagation step summary At the end of the propagation

step, the estimated state is parametrized as follows :

Xk |z 1, . . . , z k−1 ∼NG

�

µk |k−1, Pk |k−1

�

(13)

where εk |k−1 ∼NRp

�

mk |k−1 = 0p×1, Pk |k−1

�

.

3.2.2. Update

This step consists in incorporating the information com-

ing from the measurement z k into the Lie algebraic error. It

is followed by a reparametrization of the state to satisfy to the

concentrated Gaussian distribution assumption.

Lie algebraic error update Let’s define the following inno-

vation term :

z̃ k =
�

l o gG ′
�

h
�

µk |k−1

�−1
z k

��∨

G ′

=
h

l o gG ′

�

e x pG ′

�

Hkεk |k−1+O
�
�

�εk |k−1

�

�

2
��

e x pG ′

�

[wk ]
∧
G

�
�i∨

G ′

(14)

where

Hk =
∂

∂ ε

�

l o gG ′

�

h
�

µk |k−1

�−1
h
�

µk |k−1e x pG

�

[ε]∧
G

����∨

G
|ε=0

(15)

Using equation (1), we obtain :

z̃ k =Hkεk |k−1+wk +O
�
�

�εk |k−1, wk

�

�

2
�

(16)

As in the D-EKF case, terms in O
�
�

�εk |k−1

�

�

2
�

are neglected.

Moreover, we do not consider terms in O
�
�

�εk |k−1, wk

�

�

2
�

since, because of the concentrated Gaussian assumption, wk

is assumed to be small.

Equation (16) is linear in εk |k−1 which evolves on Rp .

Therefore, we can apply the classical update equations of the

3
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Kalman filter [11] to update εk |k−1 into the posterior distribu-

tion as ε−k |k ∼ NRp

�

m−
k |k , P−k |k

�

where m−
k |k and P−k |k can be

calculated as follows :







Kk = Pk |k−1H
T
k

�

Hk Pk |k−1H
T
k +Qk

�−1

m−
k |k = 0p×1+Kk

�

z̃ k −Hk 0p×1

�

P−k |k = (I d −KkHk )Pk |k−1

(17)

State Reparametrization At the end of the update step, we

expect to have Xk =µk |k e x pG

�
�

εk |k

�∧

G

�

with E
�

εk |k

�

= 0p×1

(conditionally to z 1, . . . , z k ), to satisfy the concentrated Gaus-

sian distribution definition (4). However we have E
�

ε−k |k

�

=

m−
k |k 6= 0p×1. Hence, we perform the following reparametriza-

tion :

µk |k =µk |k−1e x pG

�
�

m−
k |k

�∧

G

�

(18)

Thus, using equation (2) and neglecting terms in O

�
�

�

�ε−k |k

�

�

�

2
�

,

we obtain :

mk |k = 0p×1 (19)

Pk |k =ΦG

�

m−
k |k

�

P−k |kΦG

�

m−
k |k

�T
(20)

Update Step Summary At the end of the update step, the

estimated state is parametrized as follows :

Xk |z 1, . . . , z k ∼NG

�

µk |k , Pk |k

�

(21)

where εk |k ∼ NRp

�

mk |k = 0p×1, Pk |k

�

. The LG-EKF algo-

rithm is summarized below :

Algorithme 1 D-LG-EKF Algorithm

Inputs : µk−1|k−1 , Pk−1|k−1, u k−1, z k

Outputs : µk |k , Pk |k

Propagation :

µk |k−1 =µk−1|k−1e x pG

�
�

Ω̂k−1

�∧

G

�

Pk |k−1 =Fk−1Pk−1|k−1F
T
k−1
+ΦG

�

Ω̂k−1

�

Rk−1ΦG

�

Ω̂k−1

�T

Update :

Kk =Pk |k−1H
T
k

�

Hk Pk |k−1H
T
k +Qk

�−1

m−
k |k = Kk

�
�

l o gG ′

�

h
�

µk |k−1

�−1
z k

��∨

G ′

�

µk |k =µk |k−1e x pG

�
�

m−
k |k

�∧

G

�

Pk |k =ΦG

�

m−
k |k

�

(I d l×l −KkHk )Pk |kΦG

�

m−
k |k

�T

3.3. Discussion

The D-LG-EKF generalizes the D-EKF. An Euclidean

space is a trivial Lie group where functions e x p , l o g , [·]∧,

[·]∨, Ad and Φ are identity mappings. Furthermore, in this

case, group composition and inversion correspond to vector

addition and subtraction. Consequently, equations (5) and (6)

generalize the traditional additive noise Euclidean equations

Xk = f (Xk−1, u k−1) + n k−1 and z k = h (Xk ) +wk (see [2]) .

Moreover, for Euclidean space, matrices Fk−1 and Hk cor-

respond to Jacobians of f and h calculated at µk−1|k−1 and

µk |k−1 respectively. Therefore, it is straightforward to see that

the D-LG-EKF (see alg.1) reduces to the D-EKF (see [2])

when G and G ′ are Euclidean spaces.

Why not employing a D-EKF to solve our problem ? Esti-

mating a state X ∈G ⊂Rn×n while considering measurements

z ∈G ′ ⊂Rm×m , where G and G ′ are Lie groups of dimension

p and q respectively, is not coherent with the D-EKF theory

which was developed to estimate states evolving on Euclidean

spaces. However, it is possible to adapt the constrained D-

EKF formalism [7] in an ad hoc manner to fit to this problem,

assuming X ∈Rn×n , vectorizing it and considering the group

geometry as a state constraint. Such an algorithm (noted D-

EKF Constr in the experiments) treats the geometry of the Lie

group as an extrinsic constraint, thus the filtering is performed

in the Euclidean embedding space Rl of the Lie group, where

l > p . Consequently, both the state and the measurement co-

variance matrices are singular which causes issues during the

Kalman gain computation.

Another way to employ a D-EKF to solve our problem is

to estimate x =
�

l o gG (X )
�∨

G
instead of X [12] (noted D-EKF

LieAlg in the experiments) and to consider measurements
�

l o gG ′ (z )
�∨

G ′ . To apply such a filter, l o gG and l o gG ′ must

be defined over the whole group. In this case, the D-EKF

LieAlg is a suitable alternative to the D-LG-EKF and does

not produce singular covariance matrices. However, l o gG ′

may be discontinuous for some groups such as SO (3) which

would yield the innovation to be incorrectly large even with a

small error on the group.

When is the D-LG-EKF applicable ? The D-LG-EKF ap-

plies for Lie groups of interest such as : SO (3) and SU (2)

(rotation), SL (3) (homographies), SE (2) and SE (3) (rigid

body motion), (R+∗,×) (scale factor),(Rn ,+) (any element of

an Euclidean space) or products of these spaces. For com-

mutative Lie groups, our formalism greatly simplifies since

every term dealing with non-commutativity disappear such

as Φ. For SO (3) and SE (3), analytic expressions of l o g , e x p

and Φ are available [13]. For SL (3), these functions have to

be numerically approached.

When implementing a D-LG-EKF, the choice of the ap-

propriate Lie group (direct product ’×’, semi-direct product

’⋊’ or twisted product ’⋆’ between the spaces) as well as the

choice of its associated Lie algebra basis, remain a modeling

question for the practitioner.

4. SIMULATION RESULTS

We choose to evaluate the proposed formalism on a cam-

era pose estimation problem. It deals with estimating the

camera position T ∈ R3 and orientation R ∈ SO (3) using

a white-noise acceleration model. Therefore, both the an-

gular velocity ω ∈ R3 and the radial velocity v ∈ R3 are

4
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also estimated. We assume R and T are directly observed.

Finally, we choose to consider the following Lie groups :

G =SO (3)×R3×R3×R3 and G ′ =SO (3)×R3 with the clas-

sical basis of SO (3) [13].

To compare the results of the D-LG-EKF, we implemented

two other filters, a D-EKF Constr and a D-EKF LieAlg (intro-

duced in 3.3). We simulate a room as a 3D point cloud cube

and assume the camera to be perfectly calibrated. Then, we

generate trajectories and create sequences of measurements

in G ′ using a maximum likelihood algorithm such as [14].

The covariance of each measurement is estimated by propa-

gating the covariance from each 3D observed point. For all

the filters, T and R are perfectly initialized with small vari-

ances whereasω and v are set to zero with large variances.

Figure 3 reports the RMSE of each filter w.r.t sampling rate

δt . The RMSE is defined as the square root of the aver-

age of the following errors :


µT −T




2

2
(position error) and





l o gSO3

�

�

µR
T R
�∨

SO(3)

�






2

2

(orientation error).

As it was expected by the theoretical differences outlined

in Section3.3, the D-LG-EKF outperforms both the D-EKF

Constr and the D-EKF LieAlg. Indeed, in the D-EKF Constr,

the more δt grows, the further from the optimal state is the

state estimate projected, which results in the incorrect esti-

mates of the filter and numerical instabilities. For small δt ,

these effects are limited. Concerning the D-EKF LieAlg case,

when the norm of the vector describing the rotation in the

Lie algebra goes over π, the estimation becomes incorrect

because of the SO (3) logarithm discontinuity. As opposed to

these two filters, the D-LG-EKF does not suffer from those

limitations and consequently it does not diverge, and effi-

ciently smoothens the camera trajectory. As δt grows, the

state model becomes less informative which is why the D-

LG-EKF RMSE comes closer to the measurements RMSE.

Eventually, we also considered the case where the matrices

ΦG in the D-LG-EKF algorithm are replaced by identity ma-

trices. We call this version : D-LG-EKF NoPhi. It turns out

that neglecting the matrices ΦG only slightly reduces the per-

formances of the algorithm in the considered case. Therefore,

depending on the required accuracy of the considered appli-

cation, one can choose to replace them by identity matrices.

5. CONCLUSION

In this paper, we proposed a new generic algorithm called

Discrete Extended Kalman Filter on Lie groups that general-

izes the Discrete Extended Kalman Filter to the case where

the state and the observations evolve on Lie group manifolds.

Assuming the posterior distribution is a concentrated Gaus-

sian distribution, we showed how to propagate and update the

distribution parameters. The systematic methodology of our

algorithm was illustrated by a camera pose estimation prob-

lem where both a constrained D-EKF and a D-EKF applied

on the Lie algebra of the Lie group were outperformed. We

believe that, in this type of application, our new algorithm al-

lows one to replace the D-EKF.

Fig. 3. RMSE of the filters (RMSER : orientation and

RMSET : position) calculated on 2000 trajectories
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