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ABSTRACT

This paper presents a fast local disparity calculation algorithm
on calibrated stereo images for automotive applications. By
utilizing the ground obstacle assumption for a typical road
scene, only a small fraction of disparity space is required to
be visited in order to find a disparity map. It works by using
the neighbourhood disparities of the pixels in the lower im-
age line as supporting points to determine the search range of
its upper vicinity line. Unlike the conventional seed grow-
ing based algorithms that are only capable of producing a
semi-dense disparity map, the proposed algorithm utilises in-
formation provided by each pixel rather than trusting only the
featured seeds. Hence, it is capable of providing a denser
disparity output with low errors in homogeneous areas. The
experimental results are also compared to a normal exhaus-
tive search (block matching) algorithm, showing a factor of
ten improvement in speed, whilst the accuracy is enhanced by
20% without constraint to the maximum possible disparity.

Index Terms— Stereo Vision, Ground plane, Obstacle,
Block-based, Real-time

1. INTRODUCTION

Disparity calculation based on stereo cameras is a popular and
growing research area [1]. It provides important depth infor-
mation for object detection as the distance is inversely pro-
portional to the disparity at each pixel in the image. In order
to find the disparity, the cost or likelihood function must be
decided in order to measure the similarities between the im-
age pixels or patches of image pixels taken from the left and
right images. Then, global or local optimisation is performed,
based on the calculated costs, to determine the final dispari-
ties.

The global optimization algorithm [2] processes the
matching as a problem of minimisation of energy functions,
for example, the graph cut (GC) method [3], the belief prop-

agation (BP) algorithm [4] and the dynamic programming
method (DP) [5]. GC and BP have a higher matching ac-
curacy but at the same time a higher algorithm complexity,
while DP has a higher computational efficiency and a better
matching in practical applications, but it is still computa-
tionally intensive. Hence, they are not suitable for real-time
applications.

The most important step for the disparity calculation is to
find the correspondence between the pixels or patches on the
left and right images. For the local based methods [2, 6–10],
the correspondence is calculated based on the information
provided by a block of pixels surrounding the pixel of interest
(cost functions). However, their disadvantage is that a large
amount of errors can be introduced in the occluded and ho-
mogeneous regions. To improve the performance in homo-
geneous regions, cost aggregation methods [2] are utilised, in
which the correspondence is found by averaging the neigh-
bourhood cost functions. Such algorithms can outperform
many global optimisation algorithms, evidenced by our pre-
vious work [11]. However, they cannot achieve real-time per-
formance as they require exhaustive searches (a full search
range) and exhaustive dense matching is usually not satis-
factory because the same search range (typically 50 to 100)
is used for the entire image, potentially yielding many false
matches. Cech et al. [12] proposed disparity detection based
on a small set of corresponding seeds (GCS). The correspon-
dence is then found in a small neighbourhood around an initial
set of seed correspondences and grown iteratively. However,
the major problem in this approach is that, when a seed is
incorrectly selected, the error will cumulate in the matching
procedure and cannot be recovered. So there are many mis-
matches in the final result which could not satisfy our require-
ments of obtaining a dense disparity map.

For a typical road scene, the disparity of the road de-
creases from the bottom to the top and the disparities of the
obstacle remain the same. Fig. 1 shows a typical road scene
with its disparity map. In the disparity map, we can observe
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(a)

(b)

Fig. 1: Stereo vision disparity map example. (a): original
reference image of a typical road scene. (b): disparity map of
the scene.

that the base part of most obstacles intercepts with the road,
showing similar disparities. The other part of the obstacle
which protrudes from the road, showing higher disparities
than the road disparity of the same image line, whilst still
share similar disparities with the base part of the obstacle. By
using these observations, we assume that all obstacles are on
the road. That means, for an obstacle, the bottom part would
have the same disparity as the road.

Exploring the road obstacle assumption and inspired by
the GCS algorithm, we proposed our algorithm. In the pro-
posed algorithm, the disparities of the pixels in the image
line v are calculated with a shorter search range. This search
range is generated by using the neighbourhood disparities of
the pixels in the image line v−1. Hence, a much faster calcu-
lation compared to the traditional block-based algorithm can
be achieved. Unlike the seed based algorithm [12], the pro-
posed algorithm used all the pixels in the lower lines as sup-
port points to achieve a better performance.

In the reminder of this paper, Section 3 introduces de-
tails of the proposed algorithm, Section 4 compares the ex-
perimental results of the proposed algorithm with two similar
algorithms and Section 5 concludes the paper.

2. CONVENTIONAL SEED GROWING ALGORITHM

Because disparity errors mostly occur in homogeneous ar-
eas of the images, to determine robust seed disparity points,
conventional seed growing algorithms such as the GCS and
Lhillier et al. [12, 13] use the Harris corner detector (acquisi-
tion of feature points) on both the right and left images and

SR(u - 1, v - 1) SR(u + 1, v - 1)SR(u, v - 1)

SR(u, v)

SR(u - 1, v + 1) SR(u + 1, v + 1)SR(u, v + 1)

SR(u - 2, v) SR(u - 1, v) SR(u + 1, v) SR(u + 2, v)

Image Line v - 1

Image Line v

Image Line v + 1

Fig. 2: Conventional seed growing algorithm example.
SR(u, v) denotes the search range for pixel (u,v) and it prop-
agates the search range to neighbouring pixels.

SR(u - 1, v - 1) SR(u + 1, v - 1)SR(u, v - 1)

SR(u, v)

Image Line v - 1

Image Line v

Fig. 3: Search range generation example.

correspond such feature points to obtain their disparities.
These algorithms then grow an initial seed to its neigh-

bouring region and propagate the search range to 11 neigh-
bours of the seed, as shown in Fig.2. Each neighbour shall
then obtain a disparity value that minimises the cost (similar-
ity) function within the propagated search range. Then, it is
added to the seed list, unless the minimum cost is below a
threshold (an indication of unreliable matches) or the dispar-
ity value violates the uniqueness constraint, that is it fails the
left and right consistency check (indication of occluded area).
Another seed is drawn in the order of the image similarity and
the process is repeated until the set of seeds is empty. In this
way, matching relationships spread from seeds to neighbour-
ing regions of the entire image. Fig. 2 illustrates this process.

3. PROPOSED ALGORITHM

For this paper, we assume the input images are rectified and
co-planar, so that epipolar lines are aligned with correspond-
ing scanlines. In this case, the correspondence can only exist
on the same scanline. If p(u, v) and q(u′, v) are correspond-
ing pixels in the left and right images respectively, then the
disparity d between p(u, v) and q(u′, v) is defined as d =
u− u′.

The proposed algorithm consists of three steps: matching
cost computation, search range recalculation and, finally, dis-
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parity enhancement. Firstly, it is assumed that every obstacle
is on the road surface and, then, that the bottom part of the ob-
stacle has the same disparity as the road surface of the same
image line.

3.1. Matching cost computation

The Normalized Cross-Correlation (NCC) has been chosen as
the cost function for many traditional algorithms [1]. Unlike
the Sum of Absolute Difference (SAD), it is less sensitive to
intensity changes between the left and right images, which
can occur when two physical cameras are used. The NCC
cost volume (C) is calculated as

C(u, v, d) =∑
(u,v)∈W

[
Ir(u, v)− Īr

]
·
[
Il(u+ d, v)− Īl

]
√ ∑

(u,v)∈W

[
Ir(u, v)− Īr

]2 · ∑
(u,v)∈W

[
Il(u+ d, v)− Īl

]2
(1)

where Ir and Il represent the intensity of pixels on the right
and the left images, and u and v represent the image row and
column number, respectively. The shift distances (d) of the
maximum values in the cost volume are selected as the dis-
parities for the pixels. By calculating the NCC cost, the cost
volume C(u, v, d) for each pixel is obtained. For each pixel’s
matching cost function, a distinct peak may exist which in-
dicates the correct correspondence. However, this process
consumes a large amount of computational power during the
exhaustive correspondence searching and, when complex sit-
uations are encountered, errors are likely to be introduced in
homogeneous regions. To solve this problem, we proposed
that our algorithm should generate a controlled search range.

3.2. Controlled search range

Giving the road obstacle assumption, the disparity of the cur-
rent pixel d(u, v) would have connections with the disparities
of the pixels of the lower line d(u− 1, v− 1), d(u, v− 1) and
d(u + 1, v − 1). By exploring these connections, the neigh-
bourhood disparities of the pixels in the image line v − 1
were used to generate a much smaller search range of the
pixels in the image line v. By controlling the search range
SR(u, v) according to the neighbourhood support points, the
potential matching ambiguities were reduced. Hence, a much
faster and more accurate calculation compared to the exhaus-
tive search algorithms can be achieved. The proposed algo-
rithm generates a controlled search range according to Eq.
(2).

SR(u, v) =

SR(u− 1, v − 1) ∪ SR(u, v − 1) ∪ SR(u+ 1, v − 1) (2)

Algorithm 1 Proposed disparity calculation algorithm
disp(u, v) - disparity for pixel (u, v)
for (u, v) ∈ image size do
SR(u− 1, v − 1) =
(disp(u− 1, v − 1)− τ) : (disp(u− 1, v − 1) + τ)
SR(u+ 1, v − 1) =
(disp(u+ 1, v − 1)− τ) : (disp(u+ 1, v − 1) + τ)
SR(u, v − 1) =
(disp(u, v − 1)− τ) : (disp(u, v − 1) + τ)
SR(u, v) =
unique(SR(u−1, v−1), SR(u, v−1), SR(u+1, v−1))
for di ∈ SR(u, v) do

Calculate cost(u, v, di) over
central square window of size w

end for
disp(u, v) = arg min(cost(u, v, di))

end for

where

SR(u− 1, v − 1) ∈
{(d(u− 1, v − 1)− τ) . . . (d(u− 1, v − 1) + τ)} (3)
SR(u, v − 1) ∈
{(d(u, v − 1)− τ) . . . (d(u, v − 1) + τ)} (4)
SR(u+ 1, v − 1) ∈
{(d(u+ 1, v − 1)− τ) . . . (d(u+ 1, v − 1) + τ)} (5)

d(u, v) represents the disparity value of the pixel in posi-
tion (u, v) and τ denotes the bound of the search range. By
minimising τ , the SR(u, v) can be minimised and is shown
in Section 3.3. The proposed algorithm is described in the
pseudo code above.

3.3. Computational complexity

For the vmax line which is at the bottom line of the image, a
full search range (SR) from 0 to dmax is used and the Winner-
Take-All (WTA) technique is used to select the disparities.
For the vn line, SR is controlled by supporting points in vn−1,
as described in Eq. (2). By using the controlled SR, the
number of operations required for correspondence matching
is significantly reduced, while the sharpness of the edges in
the disparity map is still preserved.

Ofull = N ×M × dmax (6)

Oproposed = (

N∑
u=0

M−1∑
v=0

SR(u, v)) + (N × dmax) (7)

Ofull denotes the operation required for the exhaustive
search algorithm to calculate the disparity, while Oproposed
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Fig. 4: Stereo vision evaluation results using different road scenes [14]. The first row is the reference image. The second row is
the resultant disparity map for NCC. The third row is the resultant disparity map for the GCS algorithm [12]. The fourth row is
the resultant disparity map for the proposed algorithm. The last column is the ground truth disparity map.

denotes the number of operations required for the proposed
algorithm to calculate the disparity. N and M are the width
and height of the image I . In the experiment, τ = 2 is used
to minimise the controlled search ranges and dmax = 100.
While in most cases, SR(u, v) = 5, regardless of imple-
mentation used, since if the search range changed, this would
impact on the results. Compared with the exhaustive search
methods, more than 90% of the operation can be saved by the
proposed algorithm.

4. EXPERIMENTAL RESULTS

In our experiments, the KITTI image datasets [14] are used.
The resolution of the test image is 1242×376 pixels. A total
number of 194 different road image pairs with their ground
true disparity maps are used to evaluate the performance of
the algorithm in real world situations. Two algorithms, NCC
[2] and GCS [12], have been used as a comparison. Table 1
summarises the comparison between the proposed algorithm
with two disparity estimation algorithms. In this case, W =
5, dmax = 100 and τ = 2 have been chosen to achieve op-
timum results for all test data sets. The error rates are gener-

ated by comparing the results with the ground truths in non-
occluded areas, while the ground truths are generated using
the laser scanner [14]. An absolute error threshold of 1 was
chosen to evaluate the performance of our algorithm, whilst
only allowing less than 1 in the disparity step variation. As
the table illustrates, the proposed algorithm achieved a better
error rate.

NCC GCS Proposed algorithm
% % %

Scene099 6.96 18.10 2.33
Scene128 5.72 14.08 2.76
Scene148 4.62 16.79 2.50
Average 10.94 20.03 7.56

Table 1: Percentage of error pixels (absolute disparity er-
ror > 1) for three image pairs in non-occluded areas.

In Table 1, some of the frames have been selected and
the last row is the average error rate of the total 194 scenes.
The proposed algorithm achieved significant improvement
compared to two similar algorithms, while maintaining a low
computational cost.
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Fig. 4 shows the results of a road scene using the pro-
posed methods. The first row is the reference image. The
second row is the resultant disparity map using the WTA tech-
nique directly from the NCC costs, with a Left-Right consis-
tency check. The third row is the resultant disparity map for
the GCS algorithm. The fourth row is the resultant disparity
map for the proposed algorithm with a Left-Right consistency
check applied. The last column is the ground truth disparity
map for these image pairs.

By comparing with the NCC, we can see that the pro-
posed algorithm has better accuracy on planar surfaces and
preserves the sharpness of the edges, whilst there are only er-
rors occuring in the occluded areas. Because the proposed al-
gorithm is a local block-based algorithm, it also has the same
disadvantages as most of the other block-based algorithms,
such as NCC in this case. There are some errors occurring
in the homogeneous areas because a small search window
was applied. All three methods also generated large errors
from the highly saturated areas, indicated in the last column
of Fig. 4. These errors could potentially be extrapolated by
global optimization techniques but these are not the focus of
this work.

Comparing with GCS methods, the proposed algorithm
provides a much denser disparity map, especially for ground
surface detection and localization of small obstacles that
would be missed out by a semi-dense disparity map. This is
very important for the automotive applications. It also out-
performs the GCS algorithm in homogeneous areas, as shown
in Fig. 4(c). Because of its accuracy and low computational
complexity, the proposed algorithm is suitable for automo-
tive applications, which require real-time performance on
resource limited embedded systems. Because of the unique
property of the results from the proposed algorithm, which
favours planar surfaces, the disparity result is suitable for
on-road clear space detection, obstacle detection, 3-D recon-
struction applications and other applications.

5. CONCLUSION

In this work, an efficient disparity calculation algorithm is
presented and the road obstacle scenario has been exploited
to reduce the computation and improve the accuracy of the
disparity calculation. The computation reduction is due to
the controlled correspondence search range that is propagated
from the lower image line to its vicinity upper line. With the
reduction in the search range, the cost function peak ambi-
guity can be minimized, which yields the attained accuracy
improvements. By comparing the results with the conven-
tional exhaustive search block matching algorithm and a state-
of-the-art region growth algorithm using the KITTI stereo
datasets, the experimental results indicate that the proposed
algorithm has the advantage of providing much denser and
more accurate disparity maps. The benefit of low errors in ho-
mogeneous areas and the high preservation of edge details can

be especially useful in automotive applications, such as road
detection and modelling, and obstacle detection and classifi-
cation. It is also capable of real-time implementation on to
the embedded systems due to the relaxed memory require-
ment and highly parallelable (by image lines) code architec-
ture. This is our immediate future work.
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