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ABSTRACT

The study of Dynamic Textures (DT) is a recent research topic
in the field of video processing. Description and recognition
of this phenomena is notoriously a difficult problem but nec-
essary, for example, in video indexation system or video syn-
thesis. The contribution of this paper is to show that it is pos-
sible to improve the recognition of a color DT with only a part
of its information. In our approach, we propose to split a color
image sequence into two components (a geometrical compo-
nent and a textural component) using the Vectorial Rudin-
Osher-Fatemi (VROF) model. The obtained components are
used in an application of dynamic texture recognition. The
experimental results clearly show that the textural part gives
better recognition rates than those obtained with the geomet-
rical part or the original video.

Index Terms— Color Dynamic Textures, Color Spatio-
Temporal Decomposition, ARMA processes, recognition

1. INTRODUCTION

Textures are one of the important components of our visual
world and are composed of different surfaces at different
depths, orientations, with different material properties (re-
flectance), which are viewed under different light distribu-
tions. Some of the structures appear to be static and some
appear to be in motion. The textures, which have stationarity
property both spatially and temporally are referred as Tempo-
ral or Dynamic Textures (DT). The videos of processes such
as waves on water surface, smoke, fire, flag fluttering in wind,
a moving escalator, a walking crowd or moving vehicles ob-
served from a certain distance, are some examples of DTs.
In last three decades, the study of DT has gained popularity
in both computer graphics and computer vision communities
because of its vast applications such as synthesis of natural
and artificial scenes in gaming and entertainment [1], video
indexing/retrieval [2], video surveillance [3], background
subtraction [4], tracking objects in dynamic scenes [5], etc.

In this paper, we address the question of DT description
and recognition. This one is an active area of research in
computer vision. The authors of [6] present a brief survey
on description and recognition of DT. They categorize the

existing approaches into five classes: methods based on op-
tic flow [7], methods computing geometric properties in the
spatio-temporal domain [8], methods based on local spatio-
temporal filtering [9], methods using global spatio-temporal
transforms [2], and finally, model-based methods that use
estimated model parameters as features [1, 10]. Among all
these approaches, we focus hereafter on the last category.
More specifically, we use the Doretto’s model [1] for repre-
senting image sequence because this one considers a DT as
an outcome of Linear Dynamical System (LDS) that jointly
involves the geometrical, photometric and dynamic features.

The main contribution that we address in this article is: is
it possible to better recognize a DT with only a part of its in-
formation? To answer this question, in Section 2, we propose
to decompose a color DT into geometrical and textural parts
with the Vectorial Rudin-Osher-Fatimi (VROF) model [11].
In Section 3, we represent each obtained component with the
linear Auto-Regressive Moving Average (ARMA) model of
DT proposed by Doretto et al. [1]. This model considers DT
as an outcome of a second-order stationary process which can
be modeled as Linear Dynamical System (LDS) that evolves
with time. In Section 4, we propose to use Martin distance
between the Doretto’s models as a tool for DT recognition.
The recognition rates using just the textural component is
better than using the original video or the geometrical part.
Finally, Section 5 concludes this work and present future
perspectives on it.

2. COLOR DYNAMIC TEXTURE DECOMPOSITION

In this section, we present the decomposition of a color DT
into textural and geometrical component using Vectorial To-
tal Variation (VTV). The main goal is to simplify the DT in-
formation for a better representation. In [11], X. Bresson and
T.F. Chan propose a Vectorial Rudin-Osher-Fatemi (VROF)
model for denoising color images while preserving main fea-
tures such as edges. Let us consider a color image sequence
f, defined on domain Ω ⊂ R3 with Ω ∈ [1, Nx] × [1, Ny] ×
[1, Nt], as follows:

f :Ω→ R3

υ → f(υ) := (fR(υ), fG(υ), fB(υ))
(1)
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with fR(υ) (respectively fG(υ) and fB(υ)) the value of voxel
υ of coordinates (x, y, t) for red channel (respectively green
and blue). The VROF allows to obtain two components: u a
piecewise smooth part (geometrical) and v = f− u a residual
part (textural). This model can be extended for the analysis
of color video. The VROF model is given by minimizing a
functional F as follows:

inf
u

{
F (u) := ‖u‖BV (Ω;R3) +

1

2λ
‖f− u‖2L2(Ω;R3)

}
(2)

where ‖u‖BV (Ω;R3) is the Vectorial Total Variation (VTV)
and parameter λ controls the L2 − norm of the residual part
f − u. For minimizing this functional, extended Chambolle’s
projection is used [11]. The extended Chambolle’s projection
Π on space λKBV (Ω;R3)

1 of f is denoted ΠλKBV (Ω;R3)
(f). It

is possible to solve this projection with an iterative algorithm.
For each channel c = {R,G,B}, the algorithm starts with
P0
c = 0Nx×Ny×Nt and for each step we have:

Pk+1
c =

Pkc + δt∇
(
∇ · Pkc − fc/λ

)
1 + δt

√∑
h={R,G,B} |∇

(
∇ · Pkh − fh/λ

)
|2

(3)

until max
(
|λ∇ · Pk+1

c − λ∇ · Pkc |
)
≤ r, with ∇p the

spatio-temporal gradient of vector p,∇·q the spatio-temporal
divergence operator of vector q and r is a given residue.
To ensure the convergence of this iterative algorithm [11],
δt ≤ 1/8.

For an application of the VROF model on DT, it is nec-
essary to extend the gradient and divergence operators to
image sequence domain. For a voxel υ = (x, y, t) of image
sequence f, the spatio-temporal gradient is defined as follows:

(∇f)x,y,t =
(

(∇f)xx,y,t , (∇f)yx,y,t , (∇f)tx,y,t
)

(4)

with

(∇f)xx,y,t =

{
fx+1,y,t − fx,y,t if 1 < x < Nx

0 if x = Nx

(∇f)yx,y,t =

{
fx,y+1,t − fx,y,t if 1 < y < Ny

0 if y = Ny

(∇f)tx,y,t =

{
fx,y,t+1 − fx,y,t if 1 < t < Nt

0 if t = Nt

(5)

In the same way, we define the spatio-temporal divergence
operator of a vector a = (ax, ay, at) at voxel υ = (x, y, t) as

1KBV (Ω;R3) is the closed convex set associ-
ated to ‖.‖BV (Ω;R3) and defined as KBV (Ω;R3) ={
∇p ∈ L2(Ω;R3), ∀p ∈ L2(Ω;R3×3) : |p| ≤ 1

}

follows:

(∇ · a)x,y,t =


(ax)x,y,t − (ax)x−1,y,t if 1 < x < Nx

(ax)x,y,t if x = 1

−(ax)x−1,y,t if x = Nx

+


(ay)x,y,t − (ay)x,y−1,t if 1 < y < Ny

(ay)x,y,t if y = 1

−(ay)x,y−1,t if y = Ny

+


(at)x,y,t − (at)x,y,t−1 if 1 < t < Nt

(at)x,y,t if t = 1

−(at)x,y,t−1 if t = Nt

(6)
The algorithm for splitting a color DT f into two compo-

nents, a geometrical part u and a textural part v, is the follow-
ing:

u = f−ΠλKBV (Ω;R3)
(f)

v = f− u = ΠλKBV (Ω;R3)
(f)

(7)

The Figure 1 shows the decomposition of a color DT us-
ing the VROF model with two different values of parameter
λ.

Fig. 1. Decomposition of a color DT into a geometrical part u
and a textural part v with two different values of parameter λ.
For a better visualization, only one temporal slice is shown.
See Figure 2, for another view of the used sequence.

In the next section, we model the obtained components with
the Doretto’s approach.

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3. DISTANCE BETWEEN TWO DYNAMIC
TEXTURES

For computing a distance between two DTs, we represent
each DT with the Doretto’s model and we use the obtained
parameters for comparing a distance. The Doretto’s approach
proposed in [1] is briefly recalled here. For simplicity, we
present in this section this method using {y(t)}t=1,··· ,Nt

as
sequence of Nt color images with y(t) ∈ Rm 2. This im-
age sequence can be the different obtained components (u
and v) or original video f. At each instant t, the model pro-
posed by Doretto et al. represents an observed image y(t) of
a color DT as a noisy version of ideal color image I(t) ∈ Rm
with an Independently Identically Distributed (IID) sequence
w(t) ∈ Rm (known as measurement noise) drawn from a un-
known distribution.

The sequence {I(t)}t=1,··· ,Nt
is a Linear Dynamic Tex-

ture (LDT) if there exist n spatial filters as the column vectors
of a matrix C ∈ Rm×n and hidden states x(t) ∈ Rn such that
I(t) = Cx(t), and x(t+1) = Ax(t) + z(t) with z(t) ∈ Rn an
IID realization (known as process noise) from the unknown
density, and for some choices of matrices A ∈ Rn×n. Thus, a
LDT is a second-order stationary process that can be modeled
as an ARMA process with unknown input distribution z(t):

x(t+1) = Ax(t) + z(t)

y(t) = Cx(t) + w(t)
(8)

The matrix A is called as system dynamics or transition
matrix which fully controls the transition of the states (as
completely characterized by its eigen values). The matrix C
is called observation matrix which describes how the hidden
states are transformed into observable world.

The authors of [1] derives a closed-form procedure to
learn model parameters: A, C and the noise covariance ma-
trices. With this representation, we keep n as parameter for
user: this one corresponds to the vector dimension of hidden
states.

For computing the distance between two Doretto’s model,
different distances are available. Based on principal angle
between the dynamical models, Martin in [12] proposes dis-
tance for Single Input, Single Output (SISO) linear Gaussian
processes, which is also extended for multivariate case too.
There are some other distances based on the subspace angles
such as Finsler, Gap, and Frobenius distances, but here only
Martin distance is considered because other distances do not
give better results [13]. The matrices pair {A,C} does con-
tain most significant information for any dynamical system.
To calculate the principal angles and Martin distances, only
matrices pair {A,C} is considered, neglecting the noise co-
variance matrices. In the next section, we firstly present our
experimental protocol and secondly the obtained results.

2The values of the color image are reorganized in a vectorial form. m is
the size of the vector and so m = Nx.Ny .3.

4. RESULTS

4.1. Experimental protocol

Our experimental protocol, illustrated in Figure 2, is com-
posed of three main parts:
◦ The original videos are quite big in spatial size thus

the spatial size of the video is down-sampled to 35% of the
original size (720× 576) by using bicubic interpolation. The
down-sampled videos are decomposed into geometrical and
textural components by the technique discussed in Section 2
using two different parameter values for λ ∈ {0.01, 0.001}.
◦ Doretto’s models are learned separately for the down-

sampled original video, and the decomposed components,
by the estimation method discussed in section 3. The
vector dimension of hidden states is chosen to be n ∈
{10, 20, 30, 40, 50}.
◦ The leave-one-out cross validation using k-nearest

neighbors is used for the recognition step. Martin distances
are used for comparing two models.

To evaluate our approach, we perform recognition of
DT on three recently publicly available benchmarks3:
◦ Alpha dataset contains 60 image sequences divided

into 3 categories viz. Sea, Grass, and Trees with 20 examples
per categories.
◦ Beta dataset is more versatile, and contains 162 videos

divided into 10 categories viz. Sea (20), Vegetation (20),
Trees (20), Flags (20), Calm Water (20), Fountains (20),
Smoke (16), Escalator (7), Traffic (9), and Rotation (10),
where the number in the brackets represents the number of
examples in each categories.
◦ Gamma dataset is more complex and challenging. In-

deed, some classes are composed of many samples covering
many cases (change in scale, orientation, etc). Moreover,
some categories may be considered as identical, but there
are two different DT phenomena (for example calm water
vs. sea). This dataset contains 264 image sequences divided
into 10 categories viz. Flowers (29), Sea (38), Naked trees
(25), Foliage (35), Escalator (7), Calm water (30), Flags (31),
Grass (23), Traffic (9) and Fountains (37).

In the next section, the recognition results of this experi-
mental protocol are presented and discussed.

4.2. Experimental results

The overall presented results in this section were calculated
in the RGB color space. With preliminary experiments, we
have verified that the choice of color space (Lab, YCbCr) has
a little influence on the recognition results. Indeed, we exper-
imentally obtained almost the same results for both the syn-
thesis and recognition applications whatever the three color
spaces used.

3http://projects.cwi.nl/dyntex/classification_
datasets/classification_datasets.html
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Decomposition Modeling Recognition

Fig. 2. Experimental protocol: (1) decomposition of a color DT, (2) Doretto’s model, (3) recognition of DT.
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(a) Alpha dataset (b) Beta dataset (c) Gamma dataset (d)Average of recognition rates

Fig. 3. (a), (b) and (c): Recognition rates for each dataset according to the vector dimension of hidden states in Doretto’s
approach n and to the regularization parameter λ. (d): Average of recognition rates for the three datasets for studying the
parameters impact.

Figures 3.(a), 3.(b) and 3.(c) present for the three datasets,
the rates of good recognition for each component (geomet-
rical, textural or original) according to parameters λ and n
(respectively the regularization parameter and the vector di-
mension of hidden states in Doretto’s approach).

Curves (a), (b) and (c) on Figure 3 show that the textural
component brings more discriminative information than the
geometrical part or the original video. Indeed, in most cases,
the recognition rates obtained with Doretto’s model learned
on textural component is better than those obtained with orig-
inal video or geometrical component. These results clearly
show that the sharply regions with motions (present in tex-
tural component) contain a high discriminative information.
This confirms our assumption: it is of interest to decompose a

complex signal for a better understanding of its information.
In most configurations, and for each dataset, our approach

(with textural part) gives better recognition rates than the re-
sults in the literature. Indeed, in [2], using the coefficients
of wavelet transforms, the authors obtained respectively 88%,
70% and 68% for dataset Alpha, Beta and Gamma.

In these experiments, we also study the influence of pa-
rameters λ and n. Figure 3 shows, for each vector dimension
of hidden states n and for each decomposition, the average of
recognition rates for the three datasets. On this curve, we can
see that the previous observations are always valid.

It is also possible to better see the impact of the parameter
n according to λ. Indeed, more the regularization is strong
(λ decreasing), more the sharply regions and the edges are

4
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present in textural component. For a good characterization of
a rich textural part, it is necessary that the vector dimension of
hidden states in Dorreto’s approach is great. Curves of Figure
3.(d) illustrate clearly this point.

To conclude on the choice of parameters, it seems inter-
esting to use a strong λ (weak regularization) with a vector
dimension of hidden states sufficiently great (for example,
n = 30). Moreover, the computation time increases drasti-
cally with n.

5. CONCLUSIONS AND PROSPECTS

In this paper, we show that it is possible to improve the recog-
nition of a color DT with only a part of its information. In-
deed, we decompose a color DT into geometrical and textu-
ral components with the VROF model. In a second part, we
learn the model parameters from each part and from original
video following Doretto’s approach. Finally, we perform the
recognition of DTs using Martin distances estimated from the
parameters of the Doretto’s models. The obtained recognition
rates using the textural component is higher than those com-
puted using the original video or the geometrical part. More-
over, this approach has an advantage that one does not need
to explicitly select the key regions in a scene for recognition
because the textural component dominantly contains only the
textural regions in the video.

This work allows many prospects. Indeed, we have used
here the VROF model for decomposing the video. It may be
interesting to decompose the image sequence in a different
way. For example, with a decomposition model that respects
more edges [14] or with a decomposition that can split the
textural component between different parts (spatial, temporal
and spatio-temporal texture) we could obtain more discrimi-
native parts. We also think about characterizing the compo-
nents in different ways. For example, it is possible to use an
other descriptor than Doretto’s model parameters. Finally, for
classification step, other algorithms as Support Vector Ma-
chines (SVM) could be used to achieve better classification
rates.
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