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THE RELATION OF HUBS TO THE DODDINGTON ZOO IN SPEAKER VERIFICATION

Dominik Schnitzer, Arthur Flexer, Jan Schlüter
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ABSTRACT
In speaker verification systems there exists the well-known
phenomenon of speakers which are very problematic to ver-
ify and have been given various metaphoric animal names.
Our work connects this so-called ‘Doddington zoo’ and the
animals of the whole ‘biometric menagerie’ to the problem of
‘hubs’ in high dimensional data spaces, which was recently
the topic of a number of publications in the machine learning
literature. Due to a general problem of measuring distances in
high dimensional data spaces, hub objects emerge which have
a high similarity to a large number of data items. This is a
novel aspect of the ‘curse of dimensionality’ which adversely
affects classification and identification performance. In a se-
ries of experiments we try to understand the ‘Doddington zoo’
problem with respect to the notions of hubs and anti-hubs.

Index Terms— Speaker verification, normalization, hubs

1. INTRODUCTION

In a recent publication by Radovanović et al. [1] the so-called
‘hubness’ phenomenon has been described and explored as
a general problem of machine learning in high dimensional
data spaces. ‘Hubs’ are data points which keep appearing un-
wontedly often in nearest neighbor lists of many other data
points due to a general problem of measuring distances in
high dimensions. This effect is particularly problematic for
algorithms computing similarity, as the same few objects are
found to be similar to a large percentage of objects in a
database, and, at the same time, other objects vanish from
all neighborhoods.

In speaker-verification systems, the distances between sta-
tistical models of spoken words from individual speakers and
samples from the same ‘genuine’ speakers as well as from
other ‘impostor’ speakers are being computed. These simi-
larity scores are used for performance evaluation of the over-
all system. In the case of speaker-verification systems the
‘hubness’ problem would manifest itself in the form of im-
postor audio samples which are similar to a large number
of speaker-models, impairing the performance of the sys-
tem significantly. This effect is, in the field of speaker ver-
ification algorithms and more broadly in biometric identifi-
cation systems, actually known since the nineties and usu-
ally referenced as the ‘Doddington zoo’ effect. Doddington

et al. [2] coined the term because they divided the speak-
ers in a verification system into ‘wolves’, ‘sheep’, ‘lambs’
and ‘goats’. Audio samples from ‘wolves’ easily imperson-
ate other speakers (have a high similarity to a lot of speaker
models), while persons which are difficult to recognize are de-
noted as ‘goats’. Later on the zoo was even extended with the
‘biometric menagerie’ [3], adding four more animals. The ap-
pearance of such objects was always seen as an isolated prob-
lem of verification systems [3] with the cause of this problem
unclear as, for example, Poh and Tisarelli [4] note in a recent
publication.

This paper places the emergence of Doddington’s zoo in
a more general context, the phenomenon of hubs, and tries to
explain the mechanisms behind them by conducting a series
of experiments on speaker verification.

2. RELATED WORK

Objects, being unwontedly often similar to a large number
of objects or never similar to any object, have already been
observed in many areas besides verification systems. But
unfortunately these problems were always seen as an iso-
lated issue of the data or algorithm used. For example, the
problem is referenced in image retrieval [5] as ‘too-often-
selected’ and ‘never-seen’-images, in music information re-
trieval [6] (‘hub’/‘orphan’ music pieces) and, most recently,
in text-retrieval and general machine learning (‘hub’/‘anti-
hub’ objects) where Radovanović et al. [1] were for the first
time able to provide more general insight. They linked the
problem to the property of distance/similarity score ‘concen-
tration’ which occurs as a natural consequence of high dimen-
sionality.

2.1. Concentration

Concentration is the property of a similarity or distance mea-
sure that corresponds to the tendency of objects in high di-
mensional data spaces to be almost equally distant from each
other [7]. This results in pairwise distances to become al-
most identical to each other as the dimensionality increases,
thus making it difficult to distinguish between the farthest and
closest object. The effect of distance concentration has been
proven for Euclidean spaces and other `p norms [7, 8]. Kary-
dis et al. [9] empirically verified that the effect of distance
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concentration can also be observed in music information re-
trieval applications computing spectral similarity. Concentra-
tion is usually measured as a ratio between some measure of
spread and magnitude. For example, take the ratio between
the standard deviation of all distances to an arbitrary refer-
ence point in a random vector space and the mean of these
distances. If this ratio converges to zero as the data dimen-
sionality goes to infinity, the distances are said to concentrate.
In the case of the Euclidean distance and growing dimension-
ality, the standard deviation of distances converges to a con-
stant while the mean keeps growing. Thus the ratio converges
to zero and the distances are said to concentrate.

2.2. Hubs

Due to the phenomenon of concentration two things are now
expected to happen in any i.i.d. random high-dimensional data
distribution in the finite case [1]: (a) Points closer to the data
center are expected to appear, which in turn have on average a
higher similarity score to all other points. Due to this property
these points, called hubs, keep appearing in the nearest neigh-
bor lists of a lot of other objects. (b) Likewise, points which
are farther away from the data center will emerge, which have
a very low similarity score compared to all other data points.
In the extreme case, these points will never occur in the near-
est neighbor lists of other objects, and thus are called anti-
hubs.

The emergence of hubs in the scores of a speaker verifica-
tion system would also explain the emergence of the animals
in the Doddington zoo, which is a categorization of objects as
animals according to their score distribution and induced er-
ror. Hubs appear as wolves and lambs (impostors which have
a high similarity score to all speaker models and vice versa)
and anti-hubs appear as goats (impostors which have a small
similarity score to all speaker models and thus are missed in
the identification).

2.3. Score/Cohort Normalization

To alleviate the Doddington zoo effects, speaker verification
systems employ normalization methods [4]. The multitude
of normalization techniques can be divided into two major
groups: ‘cohort’ and ‘score’ normalization methods. ‘Cohort‘
normalization methods select a set of impostor speakers to
normalize the similarity scores. The speakers are usually se-
lected according to an acoustically motivated heuristic. e.g. as
‘background speakers’ by Reynolds [10]. ‘Score’ normaliza-
tion techniques operate directly on the similarity scores and
are applied to equalize inter-speaker variability and score dis-
tributions. The most broadly used score normalizing methods
are the Z-Norm [11] or the T-Norm [12].

A closely related observation, that normalization tech-
niques can be used to reduce the impact of hubs, has re-
cently been made in the domain of general machine learn-
ing. Schnitzer et al. [13] introduced Mutual Proximity, a

probabilistic distance normalization method which lessens
the problem of hubs in general distance spaces, while at the
same time quality and clustering criteria of the distance space
improve. In the next section we will use this general purpose
normalization method side by side with the methods used in
verification systems to show that they have similar effects, al-
though having been designed for different applications.

3. INVESTIGATION OF A SPEAKER
VERIFICATION SYSTEM

In what follows we will investigate in three experiments (i)
if the negative log-likelihood scores of a speaker verification
system in fact concentrate in high dimensional feature spaces,
(ii) if this leads to the emergence of hubs (and the animals in
the Doddington zoo), and (iii) what the impact of normaliza-
tion techniques in a speaker verification system is.

3.1. Speaker Verification

For our evaluations we build a system exactly replicating the
setup and classic system described by Reynolds [10]. A single
speaker model is represented as a GMM trained on the Mel
frequency cepstrum coefficient (MFCC) representation of a
number of training utterances. The GMM consists of 32 di-
agonal Gaussian components, estimated from a 2—40 dimen-
sional MFCC representation. Before computing the MFCCs
the speech signal is enhanced by spectral subtraction. A voice
activity detector is then used to select the training frames. We
use the NTIMIT [14] and TIMIT [15] databases, both con-
taining 10 speech samples from 630 speakers each. These are
smaller compared to the recent NIST SRE collections, but it
has been observed in image and text-retrieval that hubness ef-
fects occur with increasing feature dimensionality regardless
of collection size. Eight training samples are used to com-
pute a speaker model (32 mixtures, diagonal covariance), the
remaining two are used as impostor test samples. To iden-
tify speakers, the system computes the log-likelihood of a test
sample given a speaker model. If the log-likelihood is higher
than the identification threshold, the speaker was successfully
identified.

Although the presented method alone is not state of the
art, it is still an important component in recent speaker ver-
ification systems. Systems participating in the NIST 2010
speaker recognition evaluation such as the MIT LL sys-
tem [16] or the SRI system [17] both still use GMMs as an
integral part. To allow replication and reuse of the experi-
ments on any dataset, the source code of the scripts is avail-
able online.1

3.2. Concentration of the Negative Log-Likelihood Scores

In our first experiment we measure if the similarity scores
in the speaker verification system indeed concentrate when

1http://ofai.at/research/impml/projects/hubology.html
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Fig. 1. Concentration effect observed in the negative log-
likelihood scores of a speaker verification system with in-
creasing feature dimensionality.

0 10 20 30 40
100

150

200

250

d

im
po

st
or

 s
am

pl
es

(b) Hubs/anti−hubs

 

 

anti−hubs

max. hub
size

0 10 20 30 40
4

4.5

5

5.5

d

Sk=
10

(a) Hubness

Fig. 2. Increase of hubness, number of hubs/anti-hubs with
increasing feature dimensionality.

increasing the feature dimensions. We use the verification
system described in the previous section together with the
NTIMIT test database containing 168 speakers (1680 sam-
ples).

To measure the concentration of the similarity score space
we compute the neighbor-range for each speaker model as it
was done in [9]. The neighbor-range is computed for each
speaker-model as the difference between the negative log-
likelihood of the closest and k’th most similar impostor test
sample. We compute the mean (µ) and standard deviation (σ)
across all speaker-models at neighborhood ranges of k = 10 .

To see the effect develop with increasing dimensionality,
we start with 2 MFCCs and increase the number of dimen-
sions gradually up to using 40 MFCCs as input to the GMMs.
In each step we measure the concentration of distances as a
ratio of σ and µ. We repeat the experiment five times and av-
erage the results. In each of the five iterations two different
speaker samples are used as impostors, so that each sample is
used as an impostor sample exactly once.

Figure 1a shows the increase of the mean negative log-
likelihood and the measured standard deviation. While the
measured mean score increases from 0.1 to 2, the standard de-
viation only slowly increases with higher feature dimensions.
As the mean grows faster than the standard deviation, a score
concentration effect (σ/µ) can be observed in Figure 1b.

3.3. Hubs in Speaker Verification Systems

The observation of a score concentration effect in high di-
mensions leads to the second experiment, an analysis of
hubs in the examined speaker verification system. To mea-
sure the strength of the hubs phenomenon in any data base,
Radovanović et al. [1] define a ‘hubness’ measure. To com-
pute the measure, first the k-occurrence of each object x in a
database is computed (Nk

x ). Nk
x counts the number of times

x occurs in the k nearest neighbor lists of all other objects in
the collection. Hubness Sk is then defined as the skewness of
the distribution of k-occurrences Nk,

Sk = E
[
(Nk − µNk)3

] 1

σ3
Nk

.

Values close to zero indicate low hubness, high positive skew-
ness indicates high hubness. To use these measures in a
speaker verification system we first compute the similarity be-
tween all impostor test samples and speaker models. With this
information we are then able to determine the k most similar
impostor samples (nearest neighbors) of all speaker models
and compute Sk.

We replicate the setup of the previous experiment and in-
crease the number of MFCC dimensions of our speaker mod-
els step by step to measure hubness and the emergence of hub
and anti-hub objects in the NTIMIT test database (168 speak-
ers, 1680 samples). We compute the hubness Sk=10, the size
of the biggest hub (maxNk=10) and the number of objects
which never occur as one of the most similar samples to any
speaker model (Nk=10 = 0). The results are again averaged
over five runs.

Figure 2a plots the measured hubness in our experimen-
tal setup which is clearly increasing with growing feature di-
mensionality. Comparing this to Figure 1b, we can see that
there is a simultaneous higher concentration of the similarity
scores. At the same time we can see the size of the largest
hub object, and number of anti-hubs increase in Figure 2b.
Note the vertical dotted line at d = 32 in the two plots. At
this point we can see that there is an impostor sample which
occurs as close match (k = 10) in all of the 168 possible
speaker models. At the same time over 250 samples never oc-
cur in the nearest neighbor lists. Both effects, one leading to
wolves, the other to goats are undesirable effects and seem to
strengthen with increasing feature dimensionality. At d = 32
we also reach the maximum upper limit of the maximal hub
size since there already exists a hub appearing in all neighbor-
hoods (Figure 2b). This effect also limits the measured skew-
ness values (Figure 2a). In larger collections these measures
have higher limits, see for example Section 3.5 (Table 1).

3.4. Normalization in Speaker Verification Systems

In our third experiment we measure the impact of normaliza-
tion methods on hubs. We repeat the previous two experi-
ments but apply normalization methods to the scores before
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Fig. 3. The impact of normalization methods on hub related
measures (bcd) and score concentration (a) compared to the
original scores.

measuring the concentration and hubness (again using the
NTIMIT test database, 168 speakers/1680 samples). We use
background speaker (BGS) normalization [10] as representa-
tive for cohort normalization, T-Norm [12] as a representative
for score normalization, and Mutual Proximity (MP) [13] as a
method from general machine learning, unrelated to speaker
verification systems.

Figure 3 collects the results of this experiment. In Fig-
ures 3bcd we can see that all measures related to hubs are
greatly reduced when using a normalization method. For BGS
the reduction in hubness is the greatest and yields the most
balanced neighborhood (with a hubness of around 1, see Fig-
ure 3b). In terms of hubness, MP and T-Norm seem to per-
form similarly, reducing the hubness from 5.5 to 3.5. With
clearly reduced hubness, the measured size of the largest hub
object (Figure 3c) and the number of anti-hubs (Figure 3d)
also decrease. The extreme values measured in the previous
experiments are lowered significantly: the largest hub object
occurs only 10 (BGS) or 60 (MP, T-Norm) times as nearest
neighbor, while the number of anti-hubs are reduced to 60
(MP) or almost zero (T-Norm, BGS). We observe that the nor-
malization method MP designed to alleviate the hub problem
in general problem domains has similar effects like the do-
main specific normalization methods.

An interesting observation can be made when looking at
Figure 3a where we compare the concentration of distance in
the original negative log-likelihoods to the new normalized
scores (MP, BGS, T-Norm). Apparently all normalization
methods seem to de-concentrate the original scores, which in
turn explains the reduced hubness, if we reverse the argumen-

Database Benchmark Variants
Original BGS MP T-Norm

TIMIT EER 9.93 1.82 1.99 0.82
Sk=10 8.41 2.28 6.03 5.78
maxNk=10 347 35 128 106
Nk=10 = 0 589 8 65 13

NTIMIT EER 20.21 8.59 7.38 4.38
Sk=10 11.46 2.67 8.25 9.58
maxNk=10 532 45 193 248
Nk=10 = 0 914 70 213 187

Table 1. The impact of normalization on hubness and speaker
verification system performance measured with the equal er-
ror rate (EER), hubness Sk=10, the size of the biggest hub
(maxNk=10) and the number of anti-hubs (Nk=10 = 0).

tation of Radovanović et al. [1].

3.5. Impact on the Speaker Verification Performance

Until now we have only investigated the impact of the nor-
malization methods on hubs by increasing the dimensionality
of the features. In an additional experiment we survey the
performance of the speaker verification system (using 20 di-
mensional MFCCs) in terms of the hub benchmark numbers
and include the equal error rates (EER) to compare the qual-
ity of the systems. We use the complete TIMIT and NTIMIT
databases (630 speakers and 1260 test samples each).

Table 1 shows the result of the evaluation. Like in our pre-
vious evaluations we observe extremely high hubness and a
high number of hubs and anti-hubs in the original scores, with
high EER and low system performance. Looking at the results
for NTIMIT, we see a hubness (Sk=10) of 11.46 and the most
severe hub sample (maxNk=10) appearing in the neighbor-
hood of 532 speaker models out of 630 possible. At the same
time 914 speaker samples out of 1260 possible are anti-hubs
(Nk=10 = 0) and are never close to any of the speaker mod-
els.

When using a normalization method, the measured error
rates improve substantially while all hub benchmarks improve
too. For NTIMIT the EER decreases significantly from 20.21
in the original space to 8.59, 7.38 and 4.38 depending on
the normalization method used (BGS, MP, T-Norm). Anti-
hubs (Nk=10 = 0) decrease from 914 down to 70, 213 and
187 and the size of the largest hub object (maxNk=10) de-
creases from from 532 to 45, 193 and 248. This improvement
can also be seen in the hubness values (Sk=10), although the
values for normalization via MP and T-Norm remain some-
what high (8.25 and 9.58). Inspection of the distribution of k-
occurrences Nk reveals that in both cases a single object with
high k-occurrence is responsible for this remaining skewness,
suggesting that the Sk measure is not an ideal measure of
hubness alone. The number of hubs and anti-hubs should al-
ways be taken into consideration as well, as it has been done
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throughout this work. Another important observation is the
fact that T-Norm normalization, although achieving the best
EER rate, is not as good at decreasing hubness as e.g. BGS.
This tells us that hubness is an important part of explaining er-
rors in speaker verification, but most likely not the only one.

Similar effects can be observed for the TIMIT set but are
not described here in detail for lack of space. While the qual-
ity in terms of the EER varies by normalization method, all
methods improve EER rates while reducing the number of
hubs and anti-hubs.

4. DISCUSSION AND SUMMARY

We have investigated the relation of the different animals in
the Doddington zoo in a speaker verification system to the
concentration of distances and the hubness phenomenon. We
have demonstrated that the higher the feature dimension, the
more pronounced and problematic the effects become. As an
implication for speaker verification systems, impostors which
are able to impersonate a lot of other persons (‘wolves’)
and audio samples which can never be identified correctly
(‘goats’) are expected to emerge naturally as a consequence
of high dimensionality. The insights gained from our exper-
iments make us confident that hubness is not the only but an
important part of explaining the emergence of the Doddington
zoo.

This first link between two previously seemingly unre-
lated topics, hubs and the Doddington zoo, should trigger
more efforts to understand the role of hubness in speaker ver-
ification. Directions for such future work are corroboration
of our results on larger speaker data bases and using a more
state-of-the-art speaker verification system. Increasing the di-
mensionality of the system by increasing the number of mix-
tures in the GMMs instead of increasing the number of fea-
tures is another interesting aspect. And last but not least, a
hubness aware normalization procedure designed specifically
for speaker verification might be able to achieve even better
system performance.
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