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ABSTRACT

In this paper, a hybrid path-tracking system is introduced, which ex-
ploits the power of compressive sensing (CS) to recover accurately
sparse signals, in conjunction with the efficiency of a Kalman filter to
update the states of a dynamical system. The proposed method first
employs a hierarchical region-based approach to constrain the area
of interest, by modeling the signal-strength values received from a
set of wireless access points using the statistics of multivariate Gaus-
sian models. Then, based on the inherent spatial sparsity of indoor
localization, CS is applied as a refinement of the estimated posi-
tion by recovering an appropriate sparse position-indicator vector.
The experimental evaluation with real data reveals that the proposed
approach achieves increased localization accuracy when compared
with previous methods, while maintaining a low computational com-
plexity, thus, satisfying the constraints of mobile devices with lim-
ited resources.

Index Terms— Compressive sensing, sparse representations,
multivariate Gaussian model, Kalman filter, fingerprinting, indoor
localization.

1. INTRODUCTION

During the last decade, location estimation and navigation systems
emerged as important areas of research in the fields of pervasive
and mobile computing. Transportation, security, entertainment, and
medicine are just a few examples where accurate location estimation
is a key ingredient. Focusing on the problem of indoor localiza-
tion, numerous solutions have been proposed based on distinct tech-
nologies, such as IEEE802.11 [1], infrared [2], ultrasonic [3], blue-
tooth [4], or even a combination of optical, acoustic, and received
signal-strength (RSS) information along with motion attributes [5].

Based on the wide deployment of wireless local area networks
(WLANs) using IEEE802.11 infrastructures, most indoor position-
ing systems employ the RSS values obtained directly from a set of
access points (APs) by any mobile device which is connected to the
network. However, the nature and structure of indoor environments
pose significant challenges, since phenomena, such as shadowing
and multipath fading, result in radio channel obstructions and varia-
tions of the RSS values. This makes the design of accurate position-
ing systems a difficult and challenging task.

On the other hand, the inherent spatial sparsity, which character-
izes a location estimation problem, motivates naturally the use of the
novel mathematical framework of compressive sensing (CS) [6]. CS
states that signals that are sparse or compressible in a suitable trans-
form basis can be recovered from a highly reduced number of inco-
herent linear random projections, in contrast to the traditional signal
processing methods, which are dominated by the well-established
Nyquist-Shannon sampling theorem.

Motivated by the need to locate and track accurately a mobile
user who holds a device with potentially limited power, processing,
and bandwidth resources, in this paper we introduce a hybrid path-
tracking method, which extents our recently introduced fingerpint-
based positioning approach [7], which was tailored to the localiza-
tion of static users. More specifically, we propose a two-step path-
tracking method: First, we employ a region-based multivariate Gaus-
sian model to restrict the search space of candidate cells; then, for
each region, we perform CS reconstruction of an appropriate sparse
position-indicator vector, combined with a Kalman filter, as a refine-
ment step for the update of the mobile user’s estimated position.

The rest of the paper is organized as follows: Section 2
overviews the current state-of-the-art on indoor path-tracking meth-
ods, while Section 3 describes in brief our recent CS-based localiza-
tion method for static users, introduced in [7]. Section 4 analyzes in
detail the proposed algorithm for tracking the location of a mobile
user in an indoor environment, while Section 5 evaluates experimen-
tally and compares the performance of our approach with previous
state-of-the-art localization methods. Finally, Section 6 summarizes
the main conclusions and gives directions for future work.

2. PRIOR WORK ON RSS-BASED PATH TRACKING

RSS-based location estimation methods can be classified roughly in
two categories, namely, the fingerprint- and prediction-based ones.
Fingerprint-based methods consist of two individual phases, that is,
the training and the runtime phase. During the training phase, a wire-
less device records the RSS values at known predefined positions on
a discretized grid partition of the physical space and constructs the
training signature map [1, 8]. During the runtime phase, the system
also records the RSS values at an unknown position to construct a
runtime signature, which is then compared with the training signa-
ture map to estimate the user’s location.

On the other hand, prediction-based techniques use the RSS val-
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ues and radio propagation models to predict the distance of a wire-
less device from an AP [9]. The main challenge of these techniques
is the difficulty to formulate a reliable radio propagation model due
to multipath fading, shadowing, floor layout, and moving objects.

In the following, we focus on fingerprint-based localization
techniques. Current state-of-the-art methods are reviewed in brief,
which were shown to be efficient in several indoor environments,
and with which we compare the performance of the proposed path-
tracking architecture.

A common approach in location estimation problems is the use
of the k-Nearest Neighbor algorithm (kNN) [10], where an RSS map
is constructed by averaging separately the RSS values received from
each AP. It computes a signature vector of the unknown runtime cell
and a signature vector of the cell extracted during the training phase.
Then, the algorithm calculates the Euclidean distance between the
runtime and all the training cells, and reports the k closest neighbors
by sorting the distances in increasing order. The final estimated posi-
tion is given by computing the centroid of these k closest neighbors.

In [11], the problem of indoor path tracking is also treated in
a probabilistic framework. In particular, a reduced number of loca-
tions is sampled to construct a radio map, in conjunction with an in-
terpolation method, which is developed to patch effectively the radio
map. Furthermore, a Hidden Markov Model (HMM) that exploits
the user traces to compensate for the loss of accuracy is employed
to achieve further improvement of the radio map due to motion con-
straints, which could confine possible location changes. The HMM-
based localization technique requires several iterations to converge,
while in each iteration several model parameters have to be esti-
mated. The major benefit of our proposed algorithm, when com-
pared with the HMM-based approach, is the significantly reduced
computational complexity and implementation simplicity, as well as
the high accuracy in several specific environments (obstacle-free, ro-
bust measurements) as it was revealed by the experimental evalua-
tion. On the other hand, the HMM-based approach can be proven to
be more robust in case of system failures, but at the cost of requiring
increased computational resources.

In another work introduced by Guvenc et al. [12], the Kalman
filter is used without considering the time complexity of the algo-
rithm, especially in case of runtime performance, which introduces
large delays in estimating the location. This is also a major drawback
of the path-tracking methods proposed in [13, 14].

In a recent work [15], Au et al. introduced a tracking system
analyzed in two stages. During the coarse localization stage the ap-
propriate cells are chosen, while during the second stage the Kalman
filter is used to refine the location estimates. In particular, the lo-
calization algorithm is carried out on the mobile device by using the
average RSS values in order to construct the transform basis. Our
proposed work differs from the previous one in several aspects, from
the way we acquire the compressed set of measurements to the way
we perform the location estimation. For instance, in contrast to [15],
where the estimation is performed onboard by the wireless device
with the potentially limited resources, in our system the computa-
tional burden is put on the server, where increased storage and pro-
cessing resources are available. Besides, in the proposed localization
technique the CS approach is applied directly on the raw RSS mea-
surements and not on their average as in [15], and thus exploiting
their time-varying behavior. Moreover, in [15], the lack of a ran-
dom measurement matrix required when working in the framework
of CS may decrease the system’s performance under unpredictable
environmental conditions, while also the communication of the pro-
jected measurements from the wireless device to the APs, where the
localization takes place, could pose undesired security issues. In our

work, there is no insight of the physical space during runtime exper-
iments where in [15] a map information of the area is provided.

Except for the Kalman filter, particle filters [16] have been also
very popular in the design of positioning systems. However, the
main disadvantage of a particle filter lies in its high computational
cost [17]. For instance, for an indoor space of 70 m2 we need al-
most 5000 particles for each filter update. This is against the power
constraints of mobile devices, such as, cell phones, making particle
filters unsuitable for indoor localization in case of lightweight mo-
bile devices with limited resources.

In [18], a localization via random field differentiation is applied
in order to track a continuous trajectory between sampling points.
Our approach is complementary to this, since the field differentia-
tion is used as a refinement after the CS algorithm identifies the best
candidate cell as if the tracking node were static. The field differen-
tiation uses the variation in the random field and is more appropriate
to track motion trajectory between cells.

One of the main advantages of our proposed approach, is that
it succeeds to run in real time with a significantly reduced compu-
tational complexity, and thus, satisfying the constraints of devices
with limited power, memory, and bandwidth resources, which was
not addressed completely in these earlier studies.

3. CS-BASED LOCATION ESTIMATION

In this section, we review briefly the main concepts of our previous
work on localization of static users, based on the statistical modeling
of the RSS values using multivariate Gaussian (MvG) models [19],
in conjunction with a spatial sparsity assumption exploited in the
framework of CS [20].

3.1. Statistical modeling of RSS values using MvG models

We start by considering that the physical space is discretized as a
grid consisting of cells with known coordinates. Then, during the
training phase, a statistical signature is extracted for each cell by
modeling the RSS values received from a set of APs using a mul-
tivariate Gaussian (MvG) distribution. During the runtime phase, a
statistical signature is generated at the unknown position in a similar
way, which is then compared with the training signatures by means
of a statistical similarity measure, namely, the Kullback-Leibler di-
vergence (KLD). The estimated location is found by minimizing the
following KLD (D(·‖·)) between two MvGs,

j∗ = arg min
j=1,...,C

D(fR||fj,T ) , (1)

where C is the number of cells in the grid representing the physical
space, fR denotes the estimated MvG for the runtime cell, and fj,T
is the estimated MvG for the j-th training cell.

A hierarchical region-based approach [19] is applied as an initial
step to restrict the space of candidate cells, as follows: First, the
space is divided into regions (groups of cells) and then, the process is
repeated iteratively by dividing the selected region into sub-regions
and applying the algorithm on them, until we end up with the final
estimated cell. This process reduces the likelihood of selecting a
single false region/cell over the correct one. The closest region is
found by minimizing the following KLD between two MvGs,

s∗ = arg min
s=1,...,S

D(fR||Gs,T ) , (2)

where S is the number of regions and Gs,T denotes the MvG whose
parameters are estimated from the RSS values over all cells of the
s-th region during the training phase.
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3.2. Exploiting inherent spatial sparsity using CS

The spatial sparsity, which is inherent in a localization problem,
motivated us to extend our previous statistical-based localization
scheme in the framework of CS [20]. More specifically, the problem
of estimating the unknown position is reduced to a problem of recov-
ering a sparse position-indicator vector, with all of its components
being zero except for the component corresponding to the unknown
cell where the user is placed.

Let Ψ ∈ RP×N (P ≥ N ) be a matrix whose columns cor-
respond to a, possibly overcomplete, transform basis. In terms of
signal approximation it has been demonstrated [6] that if a signal
x ∈ RN is K-sparse in basis Ψ (meaning that the signal is exactly
or approximately represented by K elements of this basis), then it
can be reconstructed from M = rK � N non-adaptive linear pro-
jections onto a second measurement basis, which is incoherent with
the sparsity basis, and where r > 1 is a small overmeasuring con-
stant. The measurement model generating these projections in the
original space-domain is written as g = Φx, or via its equivalent
transform-domain representation,

g = ΦΨw , (3)

where g ∈ RM is the vector of compressed measurements, Φ ∈
RM×N denotes the measurement matrix, and w is the sparse vector
of transform coefficients.

In our indoor positioning application, the training measurement
model associated with the i−th AP is given by

gi = Φi
T Ψi

T w, (4)

and the runtime measurement model for cell c is expressed as

gc,i = Φi
Rψ

i
R,c , (5)

where the subscripts T and R are used to denote the variables (ma-
trices and vectors) generated in the training and runtime phase, re-
spectively, and ψi

R,c is the vector of runtime RSS values collected
at cell c from AP i.

For the localization problem, let w = [0 0 · · · 0 1 0 · · · 0]T ∈
RC be a position-indicator vector whose j-th component is equal
to “1” if the mobile device is located in the j-th cell. The inherent
sparsity in the problem of location estimation comes from the fact
that the device to be localized can be placed in exactly one of these
cells. Thus, in the framework of CS, the problem of localization is
reduced to a problem of recovering the 1-sparse vector w.

4. CS-KALMAN FILTER

Kalman filtering is a well-established method for estimating and
tracking the position of mobile targets. A typical Kalman filter [21]
is applied recursively on a given dataset in two steps: i) the predic-
tion and ii) the updating. The main advantage of this algorithm is
that it can be executed in real time, since it is only based on the cur-
rently available information and the previously estimated position.

Focusing on the problem of indoor localization, the device col-
lects periodically the RSS values from each AP at a specific time
interval ∆t. Then, the indoor tracking system estimates the user’s
position at time t, which is denoted by p∗(t) = [x∗(t), y∗(t)]T .
Following a Kalman filtering approach, we assume that the process
and observation noises are Gaussian, and also that the motion dy-
namics model is linear. The process and observation equations of a
Kalman filter-based tracking model are given by

x(t) = Fx(t− 1) + θ(t) (6)
z(t) = Hx(t) + v(t) (7)

Fig. 1. Flow diagram of the proposed path-tracking system.

where x(t) = [x(t), y(t), vx(t), vy(t)]T is the state vector, with x
and y being the coordinates in the physical space (user’s location)
and vx(t), vy(t) the velocity across the axes x and y, respectively,
z(t) is the observation vector, while matrices F and H define the
linear motion model. The process noise θ(t) ∼ N(0,S) and the
observation noise v(t) ∼ N(0,U) are assumed to be independent
zero-mean Gaussian vectors with covariance matrices S and U, re-
spectively. The current location of the mobile user is assumed to be
the previous one plus the distance travelled, which is computed as
the time interval ∆t multiplied by the current velocity.

The steps to update the current estimate of the state vector x∗(t),
as well as its error covariance P(t), during the prediction and the
updating phase are given by the following equations:

x∗−(t) = Fx∗(t− 1) (8)

P−(t) = FP(t− 1)FT + S (9)

K(t) = P−(t)HT (HP−(t)HT + U)−1 (10)
x∗(t) = x∗−(t) + K(t)(z(t)−Hx∗−(t)) (11)
P(t) = (I−K(t)H)P−(t) (12)

where the superscript “−” denotes the prediction at time t, and K(t)
is the optimal Kalman gain at time t.

The proposed CS-Kalman tracking system exploits not only the
highly reduced set of compressed RSS measurements, but also the
previous user’s position estimate to restrict the set of candidate train-
ing regions based on physical proximity. The Kalman filter is ap-
plied on the CS-based positioning system [22], described briefly
in Section 3.2, to improve the estimation accuracy of the mobile
user’s path. More specifically, let w∗ be the reconstructed position-
indicator vector. Of course in practice w∗ will be not truly sparse,
thus the current estimated position [xCS , yCS ], or equivalently, cell
cCS , corresponds to the highest-amplitude index of w∗. Then, this
estimate is given as an input to the Kalman filter by assuming that
it corresponds to the previous time t − 1, that is, x∗(t − 1) =
[xCS , yCS , vx(t−1), vy(t−1)]T , and the current position is updated
using (8). At this point, we would like to emphasize the computa-
tional efficiency of the proposed approach, since it is solely based on
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the use of the very low-dimensional set of compressed RSS measure-
ments given by (3), which are obtained via a simple matrix-vector
multiplication with the original high-dimensional RSS vector. Given
the limited memory and bandwidth capabilities of a small mobile de-
vice, the proposed approach can be an effective candidate to achieve
accurate location estimation, while increasing the device’s lifetime.
Fig. 1 summarizes the proposed indoor path-tracking system.

5. EXPERIMENTAL RESULTS

The efficiency of the proposed tracking system is evaluated on sets of
real data acquired in INRIA at Rocquencourt campus1 and Bell Labs,
in Murray Hill, NJ2. The estimation accuracy of the tested methods
is evaluated in terms of the localization error, which is defined as the
Euclidean distance between the centers of the estimated and the true
cell at time t, where the mobile user is located at runtime.

5.1. Evaluation in INRIA, Paris

A detailed description of the physical space can be found in the ex-
perimentations section of [18]. The wireless coverage is achieved
by using an infrastructure consisting of five IEEE802.11 APs. The
physical space is discretized in cells of equal dimensions 0.76 m ×
0.76 m, while the RSS map consists of measurements from different
cells and for an average number of five APs per cell.

The reconstruction performance is compared for two widely-
used CS algorithms, thus working with the much lower-dimensional
compressed RSS measurements, as well as with methods work-
ing directly with the original full-dimensional RSS vectors. In the
CS domain we employ and test: 1) `1-norm minimization using
the primal-dual interior point method (L1EQ-PD)3and 2) BCS-
GSM [23]. In the original RSS domain we evaluate: 3) a kNN-based
approached [10], 4) our previous method based on MvGs [19], 5) a
typical Kalman filter, and 6) a method employing a particle filter.

Fig. 2 shows the cumulative distribution functions (CDFs,
P (X < x)) of the localization error of the kNN and MvG
fingerprint-based methods working in the original RSS domain,
together with the CDFs corresponding to the L1EQ-PD and BCS-
GSM implementations of the proposed CS-Kalman approach. As it
can be seen, the CS-based methods obtain an improved position es-
timation accuracy compared to standard fingerprint-based methods
achieving median errors of 1.71 m (L1EQ-PD) and 1.36 m (BCS-
GSM), as opposed to a median error of 1.90 m for the kNN and
1.69 m for the MvG. We emphasize that in this experimental setup
the compression ratio r (ref. Section 3.2) of the runtime RSS mea-
surements vectors employed by the CS-Kalman methods is equal to
r = M

N
= 0.25. In other words, the CS-based approach achieves

better positioning results with a significantly reduced amount of data
by exploiting the inherent spatial sparsity property of the localization
problem.

Fig. 3 compares the localization error of the proposed CS-
Kalman filter approach using BCS-GSM to solve the sparse re-
construction problem, with the typical Kalman and particle filters.
Again, we observe that our proposed approach achieves a higher
estimation accuracy with a significantly reduced computational
complexity, when compared to the Kalman and particle filters.

1The data were collected during the first and third’s authors affiliation
with Hipercom team at INRIA, for which it is highly acknowledged.

2The Statistics and Learning Research department of Bell Labs in Murray
Hill, NJ, and P. Mirowski are highly acknowledged for sharing the dataset.

3http://sparselab.stanford.edu/
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Fig. 2. Performance evaluation of the proposed path-tracking
method (L1EQ-PD and BCS-GSM), compared with methods based
on kNN and MvGs.
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Fig. 3. Performance evaluation of the proposed path-tracking
method (BCS-GSM), compared with the typical Kalman and par-
ticle filters.

5.2. Evaluation in Bell Labs, Murray Hill, NJ

Table 1 illustrates three different trajectories acquired both in an of-
fice space, in a large corridor with a high, slanted ceiling and in the
5-story atrium. The signal-strength was captured by a robot which
covered an area of about 40 m × 50 m, on a single floor, with an
installed mobile phone on it. Every channel of an AP is considered
as a different AP, and we have 72 channels. One of the trajectories,
with multiple small loops, is used for defining the fingerprints. Three
other trajectories (so-called Track 1, Track 2 and Track 3) were ac-
quired later the same day, towards the end of the business day when
there were occasional people moving around the robot, which was a
challenge. In order to define fingerprint cells, we simply subdivide
the trajectory of the robot according to a regular grid defined using
the building coordinates, which was 1 m×1 m. In order to assess the
impact of the fingerprint grid size and the trade-off between a denser
fingerprint grid (with fewer RF samples) and a coarser fingerprint
grid (with more RF samples in each cell), we have explored vari-
ous resolutions for the fingerprint grid size in the Bell Labs atrium
dataset: 1 m, 2 m, 3 m, 4 m, 5 m, 7.5 m and 10 m. We expect that
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richer fingerprints containing more received signal strength (RSSI)
samples per cell would enable better discrimination between RSSI
distributions in different fingerprint cells.

The MvG algorithm takes advantage of correlations of the RSSI
at certain positions from various APs. Due to the non-visibility of
many APs (some of them are not frequently heard) in the positions
during training and runtime, the MvG algorithm computes only the
correlation between the common APs which are visible in both train-
ing and runtime cell. The proposed framework in Section 3 performs
better in general, with best results for grid size of 2 m× 2 m.

Table 1. Results in Bell Labs, Murray Hill, NJ
Grid size (m) 1 2 3 4 5 7.5 10
Track 1 MvG 2.09 1.85 2.11 3.10 3.78 3.87 4.32

CS 1.73 1.57 1.92 2.23 2.32 3.30 3.80
Track 2 MvG 1.81 2.04 2.60 3.31 3.89 4.06 4.86

CS 1.33 1.23 1.46 2.61 2.45 2.59 3.74
Track 3 MvG 2.12 2.42 2.59 3.11 3.28 3.77 4.09

CS 1.92 1.61 1.63 2.51 2.79 3.01 3.47

6. CONCLUSION

In this paper, we proposed a path-tracking method for indoor lo-
calization by exploiting the efficiency of a CS framework with the
accuracy of a Kalman filter. Using our previous method of MvG-
based modeling as an initial step to constrain the area of interest,
CS was applied then as a refinement step by recovering an appro-
priate sparse position-indicator vector. The experimental evaluation
with a set of real datasets revealed an increased localization accu-
racy, when compared with previous state-of-the-art methods, while
operating at a significantly reduced computational cost by using only
a small number of compressed RSS measurements.

As a future work, we intend to exploit the joint sparsity structure
of the position-indicator vector w among the several APs, improving
the reconstruction accuracy. A further investigation could be also
conducted on the inherent encryption properties of the proposed CS-
based method for potential employment in secure localization.
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