
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

TOPOLOGY-AWARE DISTRIBUTED ADAPTATION OF LAPLACIAN WEIGHTS FOR
IN-NETWORK AVERAGING

Alexander Bertrand and Marc Moonen

KU Leuven, Dept. of Electrical Engineering-ESAT, SCD-SISTA
Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

E-mail: alexander.bertrand@esat.kuleuven.be
marc.moonen@esat.kuleuven.be

ABSTRACT

Laplacian weights are often used in distributed algorithms
to fuse intermediate estimates of linked agents or nodes in
a network. We propose a topology-aware (TA) distributed
algorithm for on-line adaptation of the Laplacian weighting
rule, when applied in an in-network averaging procedure.
We demonstrate that the particular structure of the Laplacian
weighting rule indeed allows for a distributed convergence
rate optimization, based on the in-network computation of
two eigenvectors of the Laplacian matrix and their corre-
sponding eigenvalues. Although the proposed TA distributed
algorithm cannot always reach the same (optimal) weights as
its centralized equivalent, simulations demonstrate that it still
provides a significant improvement on the convergence speed
when compared to more general combination weights.

Index Terms— Distributed learning, Fiedler vector,
Laplacian weights, consensus averaging

1. INTRODUCTION

Distributed learning and distributed estimation have become
important topics within the field of signal processing [1–6],
mainly due to the increased popularity of multi-agent systems
and wireless sensor networks and their application in, a.o.,
environmental monitoring, surveillance, robotics, etc.

The performance of a distributed learning or estimation
algorithm generally depends on the topology1 of the network

Acknowledgements: The work of A. Bertrand was supported by a Post-
doctoral Fellowship of the Research Foundation - Flanders (FWO). This work
was carried out at the ESAT Laboratory of KU Leuven, in the frame of KU
Leuven Research Council CoE PFV/10/002 (OPTEC), Concerted Research
Action GOA-MaNet, the Belgian Programme on Interuniversity Attraction
Poles initiated by the Belgian Federal Science Policy Office IUAP P7/23
(BESTCOM, 2012-2017), Flemish Government iMinds 2013, and Research
Project FWO nr. G.0763.12 ‘Wireless acoustic sensor networks for extended
auditory communication’. The scientific responsibility is assumed by its au-
thors.

1It is noted that, in stochastic estimation frameworks, e.g., diffusion adap-
tation [1], the convergence does not only depend on the topology of the net-
work, but also on the stochastic properties of the observations.

in which it is operated. If the topology is known a priori, it
is sometimes possible to optimize the algorithm’s parameter
settings with respect to the topology (see, e.g., [3]). How-
ever, as the network is often deployed in an ad hoc fashion,
its resulting topology may be unknown at design time, and
sometimes the topology may even change during operation
of the algorithm. In this case, distributed algorithms usually
rely on general ‘topology-unaware’ (TU) parameter settings,
which are suitable for any possible topology. For example, in
distributed algorithms where the nodes compute a weighted
average between their local estimate and the estimates of their
neighbors [1–6], the weighting rule usually only depends on
simple quantities that can be easily evaluated on-line, such
as the node degrees, the total number of nodes, etc. Exam-
ples of such general weighting rules are the Laplacian rule,
the maximum-degree rule, the Metropolis rule, etc. (see [1]
for an overview). Although these are easy to use, they are not
tuned to the actual topology of the network in which they are
applied, and hence suboptimal.

It is a non-trivial task to design topology-aware (TA) dis-
tributed algorithms that do not require prior knowledge on the
network topology. However, by using concepts from spectral
graph theory, the nodes can learn some topology-related prop-
erties, which can then be used to tune certain parameters of
the distributed algorithm [7]. This paper focuses on the use of
such techniques to improve the so-called Laplacian weighting
rule, which is based on the Laplacian matrix of the network
graph. We propose an on-line (adaptive) TA distributed algo-
rithm that optimizes the Laplacian weights at each individual
node, in particular for application in the consensus averaging
(CA) algorithm [3]. The CA algorithm iteratively computes
the network-wide sum and/or average over quantities that are
distributed over the different nodes of the network. The CA
algorithm and its variations is a common subroutine in many
distributed algorithms (see, e.g., [6, 8, 9]), for which a fast
convergence is often crucial, especially so when it is used in
a nested iteration.

Our algorithm for on-line updating of the Laplacian
weights is based on a projected subgradient algorithm, which

EUSIPCO 2013 1569743291

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

requires a distributed computation of two eigenvectors of the
Laplacian matrix (the principal eigenvector and the so-called
Fiedler (eigen)vector). In contrast to an equivalent centralized
implementation of the algorithm, our distributed algorithm
cannot always reach the optimal Laplacian weights. How-
ever, we will demonstrate that it still provides a significant
improvement of the CA convergence speed compared to a
CA that adopts frequently used TU combination weights.

2. PROBLEM STATEMENT

2.1. Definitions and notation

We consider a connected ad hoc network with K nodes,
where the set of nodes is denoted byK, i.e., |K| = K. We de-
note Nk as the set of neighbors of node k, i.e., the nodes that
are linked to node k (node k excluded), and |Nk| is referred
to as the degree of node k. We define I as the identity matrix,
and 1 as a vector with all entries equal to one (dimensions
should be clear from the context).

The adjacency matrix A = [akq]K×K of the network
graph is defined as

akq = aqk =
{

1 if q ∈ Nk
0 otherwise . (1)

Let W = [wkq]K×K denote the weighted adjacency ma-
trix, where wkq is a non-negative weight assigned to the link
between node k and node q (by definition, wkq = 0 if k /∈
Nq). If there are no link weights defined, we set W = A.

The Laplacian matrix L = [lkq]K×K is defined as

lkq = lqk =


∑
j∈Nk

wkj if k = q

−wkq if q ∈ Nk
0 otherwise

(2)

The Laplacian matrix L is always positive semidefinite, and
it has a zero eigenvalue λ1 = 0 (eigenvalues are sorted in in-
creasing order of magnitude, i.e., 0 = λ1 ≤ λ2 ≤ . . . ≤ λK)
with corresponding eigenvector 1√

K
1. In case of connected

graphs, this zero eigenvalue is unique.

2.2. Consensus averaging (CA)

The CA algorithm computes the network-wide average or
sum over quantities that are distributed over multiple nodes.
To this end, assume that a node k ∈ K has access to a numeric
value x(0)

k , then the goal of the CA algorithm is to compute
x = 1

K1Tx(0) (where x(0) has x(0)
k as its k-th entry). A

common approach is to let neighboring nodes exchange in-
termediate estimates and combine these with their own local
estimate by computing a weighted sum, i.e., all nodes k ∈ K
simultaneously compute x(i+1)

k = gkkx
(i)
k +

∑
q∈Nk

gkqx
(i)
q .

This can be compactly written in the network-wide equation

x(i+1) = G · x(i) (3)

with G = [gkq]K×K (where gkq = 0 if q /∈ Nk). This it-
erative update is repeated until x(∞)

k = x, ∀ k ∈ K, i.e., the
consensus state is reached (see [3] for necessary and suffi-
cient conditions on the weights gkq to achieve this). A popu-
lar choice for the weight matrix G is the Laplacian weighting
rule, i.e.,

G = I− σL . (4)

It can be shown that the use of this matrix in (3) will yield
convergence to the consensus state if σ takes a value between
0 < σ < 2

λK
[3]. In this case, G has a unique maximum

eigenvalue equal to one, with corresponding eigenvector
1√
K

1. Since the absolute value of all other eigenvalues is
smaller than 1, it holds that limi→∞Gi = 1

K11T . It is noted
that the maximum-degree rule [1] is a special case of (4)
where W = A such that each link is weighted equally, and
σ = 1/K, which guarantees that 0 < σ < 2

λK
is satisfied.

A fast convergence of the CA algorithm can be of crucial
importance, especially so when it is used as a subroutine or in
a nested iteration in other distributed algorithms [6, 8, 9]. In
the next subsection, we explain how the convergence speed of
the CA algorithm can be significantly improved by taking the
network topology into account.

3. CENTRALIZED OPTIMIZATION OF THE
LAPLACIAN WEIGHTING RULE

3.1. Optimization of σ

Since the CA algorithm relies on a simple power iteration
(3), its convergence speed directly depends on the ratio of
the largest and one-but-largest eigenvalue of G. To define
convergence more formally, we use the so-called asymptotic
convergence factor [3]

ρ = sup
x6=x1

lim
i→∞

(
‖x(i) − x1‖
‖x(0) − x1‖

) 1
i

(5)

where a smaller ρ corresponds to a faster convergence.
If G satisfies the necessary and sufficient conditions to

achieve consensus, it can be shown that ρ is equal to the sec-
ond largest eigenvalue (in absolute value) of G [3]. There-
fore, if G satisfies (4) with 0 < σ < 2

λK
, then

ρ = max(|1− σλ2|, |1− σλK |) (6)

where λ2 is the smallest non-zero eigenvalue of L, also re-
ferred to as the algebraic connectivity of the network graph
[7], and where λK is the largest eigenvalue of L. The σ that
minimizes ρ can then easily be found to be [3]

σ∗ =
2

λK + λ2
. (7)

When substituting this in (6), we find that the minimal asymp-
totic convergence factor is

ρ∗ =
λK − λ2

λK + λ2
. (8)

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

3.2. Optimization of the link weights

The link weights that are used in (2) to define L provide us
with additional degrees of freedom to optimize ρ, i.e., by tun-
ing these weights we can manipulate the eigenvalues of L. To
this end, we first derive a centralized projected subgradient
algorithm. In Section 4, we show how this algorithm can be
implemented in a distributed fashion.

The value ρ∗ depends on the weights wkq and so can be
treated as an objective function ρ∗ (W) which is then mini-
mized with respect to the optimization variables in W. From
(8), the partial derivative of ρ∗ with respect to the weight wkq
is found to be

∂ρ∗

∂wkq
=

2
(λK + λ2)2

(
λ2
∂λK
∂wkq

− λK
∂λ2

∂wkq

)
. (9)

It can be shown that [7, 10]

∂λ2

∂wkq
= (fk − fq)2 (10)

where fk and fq denote the k-th and q-th entry of the (normal-
ized) λ2-eigenvector of L. This eigenvector is often referred
to as the Fiedler (eigen)vector [7, 11], and it is denoted here
as f . Similarly, if we denote the principal eigenvector of L
(corresponding to λK) as p, then

∂λK
∂wkq

= (pk − pq)2 . (11)

Define the K ×K matrices P = p · 1T and F = f · 1T , then
the (sub)gradient of ρ∗ (W) is equal to

∇ =
2

(λK + λ2)2
(
λ2

(
P−PT

)�2 − λK
(
F− FT

)�2
)

(12)
where the operator (X)�2 takes the square of each entry of
X. The matrix W can then be optimized based on a projected
(sub)gradient method, i.e.,

W(i+1) =
(
W(i) − µ ∇(i)

)
+
�A (13)

where µ is a user-defined stepsize, ∇(i) denotes the (sub)-
gradient (12) evaluated in W(i), � denotes an elementwise
multiplication (Hadamard product), and the operator (X)+
sets all negative entries of X to zero. It is noted that the re-
sult of the (sub)gradient update is indeed projected onto the
feasible set, i.e., the set of non-negative link weights. If we
initialize (13) with W(0) = A, then each update will yield
a new Laplacian matrix L(i), and hence a new set of Lapla-
cian weights in the matrix G(i) with improved convergence
properties (see also Section 5). In Section 4, we will demon-
strate that the particular form of (12) allows for a convenient
distributed implementation.

Remark I: It is observed that links between nodes with
a large difference between their respective entries in f will

receive a larger weight2 when applying (13). It can be shown
that these links typically correspond to ‘bridge links’ be-
tween densely-connected node clusters in the network [7]
(the Fiedler vector is also often used to reveal these node
clusters). As these bridge links are the bottle necks in the
information dissemination over the network, they should in-
deed receive a larger weight in the averaging procedure to
achieve efficient information exchange between the different
node clusters [7]. The Fiedler vector is also often used as a
heuristic to manipulate the network topology, and hence to
optimize the information dissemination [7, 10].

4. TA DISTRIBUTED ADAPTATION OF THE
LAPLACIAN WEIGHTS

4.1. Distributed computation of λ2, λK , f and p

If all nodes would have access to λ2 and λK , then σ∗ could
be computed at each node with (7), and the local Laplacian
weights gkq , ∀ k, q ∈ K could be updated accordingly with
(4). Furthermore, if each node k ∈ K would also have access
to fk, pk, fq , and pq , ∀ q ∈ Nk, then the nodes could also
update their corresponding link weights based on (13).

The nodes can learn their respective entries in f and p
by performing power iterations (PIs) based on L, which is
implicitely encoded in the network, hence allowing for an ef-
ficient distributed implementation [7]. For example, consider
the PI

y(t+1) =
1
r(t)

L · y(t) (14)

where r(t) is an estimate of r(t) = ‖Ly(t)‖
‖y(t)‖ , which is used

to avoid that limt→∞ ‖y(t)‖ = 0 or limt→∞ ‖y(t)‖ = ∞.
This PI is known to converge to a principal eigenvector p (as-
suming pTy(0) 6= 0) and can be easily implemented in a dis-
tributed fashion since y(t+1)

k only relies on y(t)
k and y(t)

q , ∀q ∈
Nk. The estimation and tracking of r(t) can be taken care of
by a distributed algorithm that runs in parallel with (14). For
example, r(t) is estimated by using gossip in [12] and by using
diffusion adaptation in [11]. Note that limt→∞ r(t) = λK ,
hence λK can be extracted from the estimate r(t). In the se-
quel, we refer to (14) as the p-algorithm.

The computation of f and λ2 can rely on similar PI-based
principles, although it is slightly more elaborate since f does
not correspond to an extreme eigenvalue [11]. Consider the
matrix

V = L
(
I− 1

α
L
)N

(15)

where α > λK and where N is a positive integer. It can
be shown that, if N is sufficiently large, f is the principal
eigenvector of V, which is then computed by an in-network
PI similar to (14). We refer to [11] for more details on

2This can be seen from the combination of (10), (12) and (13).

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

this distributed computation of f , which we refer to as the
f -algorithm.

It is noted that the p- and f -algorithms in [7, 11] es-
timate p and f up to an unknown scaling. For exam-
ple, the f -algorithm in [11] generates a converging series
{y(1),y(2), . . . ,y(t)}, where limt→∞ y(t) = f = βf with
β 6= 0. However, since (13) requires normalized eigenvectors,
an additional distributed normalization procedure is required.
To this end, we apply the following CA-based iteration3

n(t+1) = G
(
n(t) + ∆(t)

)
(16)

where
∆(t) =

(
y(t)

)�2

−
(
y(t−1)

)�2

(17)

which is initiated with n(0) = 0 and y(0) = 0. Using
limt→∞Gt = 1

K11T , limt→∞ y(t) = f , and the fact
that the sequence {‖∆(t)‖}t∈N is square-summable4, it
can be shown (details omitted) that (16) will converge to
limt→∞ n(t) = 1

K ‖f‖
21, i.e., a node k ∈ K can compute

fk =
fk√
nk

(18)

where we have ignored5 the scaling factor with K. A similar
normalization procedure is applied in the p-algorithm, yield-
ing a normalized p with the same norm as f .

4.2. Algorithm outline

Based on the distributed computation of λ2, λK , f and p,
as explained in Section 4.1, we can formulate a distributed
algorithm for adapting the Laplacian weights. In the sequel,
the operators F (f) and P (p) perform a single iteration of
the f - and p-algorithm, respectively (returning a new es-
timate of f , λ2, p, and λK as an output). The operator
N
(
n(t),y(t+1),y(t)

)
performs a single iteration of (16).

With this notation, we can describe the TA distributed updat-
ing procedure of the Laplacian weights as follows:

1. Initialize W← A, t← 0

2. Initialize f
(0) ← 1, p(0) ← 1, n(0)

f ← 1 and n(0)
p ← 1.

3. Compute L according to (2).

4. Repeat until convergence of f , p, nf , and np:

• [f
(t+1)

, λ
(t+1)
2]← F

(
f
(t)
)

3Note that we can either use TA Laplacian weights or a fixed TU weight-
ing rule for G (see also Remark III in Section 4.2).

4This means that
P∞

t=0 ‖∆(t)‖2 < ∞, which follows from the fact
that the sequence {y(t)}t∈N is generated by a PI, which always produces
square-summable errors.

5If the same procedure is used to normalize p, it will hold that ‖f‖ =
‖p‖ =

√
K, such that the gradient update (12)-(13) is still correct (the factor√

K is then incorporated in the stepsize µ).

• [p(t+1), λ
(t+1)
K]← P

(
p(t)

)
• n(t+1)

f ← N
(
n(t)
f , f

(t+1)
, f

(t)
)

• n(t+1)
p ← N

(
n(t)
p ,p(t+1),p(t)

)
• t← t+ 1

5. Set σ ← 2

λ
(t)
2 +λ

(t)
K

and compute G according to (4).

6. ∀ k ∈ K compute fk and pk based on their correspond-
ing entries in f

(t)
, p(t), n(t)

f and n(t)
p , similar to (18).

7. Update W according to (13).

8. Return to step 3.

This algorithm can run in parallel with the CA algorithm,
and both can even run completely independently and at dif-
ferent paces (there is no need to jointly synchronize them).

Remark II: A simplified TA distributed algorithm can be
obtained by removing steps 6 and 7, as well as the computa-
tion of np and nf . In this case, the algorithm only optimizes
σ, while using the same weights for all links, i.e., W = A.
This simplification significantly improves the convergence of
the Laplacian weights, at the cost of a smaller increase in CA
convergence rate.

Remark III: If the matrix G, as computed in step 5, is
also used in (16), this creates a form of feedback which may
destabilize the algorithm if σ temporarily becomes larger than
2
λK

(e.g., due to inaccuracies or sudden changes in the topol-
ogy). Therefore, to allow the algorithm to correct itself in
such situations, it may be better to use a TU weighting rule in
(16), e.g., with Metropolis weights [1].

4.3. Limitations of the distributed algorithm

The distributed algorithm described in Section 4.2 mimics
the centralized optimization algorithm described in Section
3. However, simulations have indicated that the distributed
algorithm often breaks down when either λK ≈ λK−1 or
λ2 ≈ λ3, i.e., when the algorithm has reached a point where
p or f get close to non-uniqueness. This is because the algo-
rithm then continuously needs to switch between two eigen-
vectors which are almost orthogonal to each other. This quasi-
orthogonality results in convergence problems within the PIs,
which significantly affects the overall algorithm. Therefore,
the proposed distributed algorithm (in its current form) can
only optimize ρ up to this breakdown point. However, despite
this limitation, the algorithm still significantly improves the
convergence speed of the CA algorithm (see Section 5).

5. SIMULATIONS

We have performed Monte-Carlo (MC) simulations of the CA
algorithm in networks consisting of K = 32 nodes. Each
network was generated as 4 random subnetworks with 8 nodes

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

0 20 40 60 80 100 120 140 160 180 200
−15

−10

−5

0

5

10

15

20

CA iteration

N
e
tw

o
rk

−
w

id
e
 e

rr
o
r

[d
B

]

Maximum−degree rule (ρ= 0.99508)

Metropolis rule (ρ= 0.97341)

σ* optimization (ρ= 0.96147)

Link weight optimization until breakdown (ρ= 0.95097)

Optimal Laplacian weights (ρ= 0.94477)

Fig. 1. Convergence speed of the CA algorithm when using differ-
ent weighting rules (averaged over 200 MC runs) .

(in which each node has 3 neighbors on average), which were
then interconnected by 8 additional random links. Assuming
the nodes have to compute the average x of the entries in x(0),
then the network-wide error (in dB) at iteration i of the CA
algorithm is defined as 10 log10

(
‖x(i) − x1‖

)
. The stepsize

µ was manually tuned and set to µ = 0.3.
Fig. 1 shows the decrease of the network-wide error in

the CA algorithm (averaged over 200 MC runs) for several
different choices of G, i.e., the maximum-degree rule [1], the
Metropolis rule [1], and the TA Laplacian weighting rule with
(a) optimized σ (and W = A), (b) optimized link weights
until the breakdown point (as explained in Subsection 4.3),
and (c) fully-optimized link weights. It is noted that the CA
algorithm here only starts after the optimization of the link
weights. It is observed that the optimization of σ already
provides a significant improvement. Convergence is further
improved by also optimizing the link weights based on (13).
Even when (13) is stopped at the breakdown point, the CA
convergence speed is close to optimal.

In a second experiment, starting from the same initial
topology, a random link was added or removed (with equal
probability6) after every 10000 iterations (now the CA algo-
rithm runs in parallel with the weight adaptation algorithm).
In Fig. 2, we show the evolution of the asymptotic conver-
gence factor ρ, when using different strategies for TA updat-
ing of the Laplacian weights. As a reference, we also show
the ρ corresponding to the Metropolis rule, and to a fixed
Laplacian rule (where σ is optimized for the initial topology,
and then fixed). It is observed that the latter becomes unstable
(ρ > 1), which shows the importance of the TA adaptation of
the Laplacian weights. It is also observed that the simplified
algorithm that only updates σ converges much faster than the
algorithm that also optimizes the link weights.

6. CONCLUSIONS

We have proposed a TA distributed algorithm for on-line
adaptation of the Laplacian weights to improve the conver-

6In general, this should improve the convergence of the CA algorithm, as
the network will become less ‘clustered’.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

1.01

1.02

Iteration of distributed algorithm for TA adaptation of Laplacian weigths

A
s
y
m

p
to

ti
c
 c

o
n
v
e
rg

e
n
c
e
 f
a
c
to

r
ρ

Metropolis rule

Fixed TU σ (initially optimal)

Adaptive TA σ* optimization (no update of link weights)

Adaptive TA link weight optimization (until breakdown)

Optimal Laplacian weights

Fig. 2. Evolution of the CA asymptotic convergence factor during
topology changes (averaged over 200 MC runs).

gence speed of the CA algorithm. The algorithm performs
an optimization of a network-wide parameter σ, which is
used to construct the Laplacian weights, and further improve-
ments can be obtained by also optimizing the individual link
weights. The algorithm is based on an in-network com-
putation of two eigenvectors of the Laplacian matrix. The
performance of the algorithm, as well as its limitations have
been demonstrated by means of numerical Monte-Carlo sim-
ulations.

7. REFERENCES

[1] A. H. Sayed, “Diffusion adaptation over networks,” in E-Reference Signal Pro-
cessing, R. Chellapa and S. Theodoridis, Eds. Elsevier, 2013.

[2] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Adaptive robust distributed
learning in diffusion sensor networks,” IEEE Trans. Signal Processing, vol. 59,
no. 10, pp. 4692 –4707, oct. 2011.

[3] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems
and Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[4] D. Jakovetic, J.M.F. Moura, and J. Xavier, “Distributed detection over noisy net-
works: Large deviations analysis,” IEEE Trans. Signal Processing, vol. 60, no. 8,
pp. 4306 –4320, aug. 2012.

[5] G. Mateos, I. D. Schizas, and G.B. Giannakis, “Performance analysis of
the consensus-based distributed LMS algorithm,” EURASIP Journal on Ad-
vances in Signal Processing, vol. 2009, Article ID 981030, 19 pages, 2009.
doi:10.1155/2009/981030.

[6] A. Scaglione, R. Pagliari, and H. Krim, “The decentralized estimation of the
sample covariance,” in Asilomar Conference on Signals, Systems and Computers,
oct. 2008, pp. 1722 –1726.

[7] A. Bertrand and M. Moonen, “Seeing the bigger picture: How nodes can learn
their place within a complex ad hoc network topology,” IEEE Signal Processing
Magazine, May 2013.

[8] D. Kempe and F. McSherry, “A decentralized algorithm for spectral analysis,”
Journal of Computer and System Sciences, vol. 74, no. 1, pp. 70–83, 2008.

[9] S.V. Macua, P. Belanovic, and S. Zazo, “Consensus-based distributed principal
component analysis in wireless sensor networks,” in Int. Workshop on Signal
Processing Advances in Wireless Communications (SPAWC), june 2010, pp. 1 –5.

[10] A. Ghosh and S. Boyd, “Growing well-connected graphs,” in IEEE Conference
on Decision and Control, Dec. 2006, pp. 6605–6611.

[11] A. Bertrand and M. Moonen, “Distributed computation of the fiedler vector with
application to topology inference in ad hoc networks,” Signal Processing, vol. 93,
no. 5, pp. 1106–1117, May 2013.

[12] M. Jelasity, G. Canright, and K. Engo-Monsen, “Asynchronous distributed power
iteration with gossip-based normalization,” in Lecture Notes in Computer Science.
2007, vol. 4641, pp. 514–525, Springer.

5

