
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

AN INFORMED MMSE FILTER BASED ON MULTIPLE INSTANTANEOUS
DIRECTION-OF-ARRIVAL ESTIMATES

Oliver Thiergart, Maja Taseska, and Emanuël A. P. Habets
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ABSTRACT

Sound acquisition in noisy and reverberant conditions where the

acoustic scene changes rapidly remains a challenging task. In this

work, we consider the problem of obtaining a desired, arbitrary

spatial response for at most L sound sources being simultaneously

active per time-frequency instant. We propose a minimum mean-

squared error spatial filter that adapts quickly to changes in the

acoustic scene by incorporating instantaneous parametric informa-

tion on the sound field. In addition, an estimator for the power

spectral densities of the L sources is developed that exhibits a suf-

ficiently high temporal and spectral resolution to achieve both dere-

verberation and noise reduction. Simulation results demonstrate that

a strong attenuation of undesired noise and interfering components

can be achieved with a tolerable amount of signal distortion.

Index Terms— microphone array processing, optimal beam-

forming, dereverberation

1. INTRODUCTION

Sound acquisition in noisy and reverberant environments with sev-

eral simultaneously active sources is commonly found in modern

communication systems. A large variety of spatial filtering tech-

niques has been proposed in the last decades to accomplish this task.

We can classify existing spatial filters roughly into classical linear

filters [1–4] and parametric filters [5–8]. The classical linear spa-

tial filters require estimates of the propagation vectors or second-

order statistics (SOS) of the desired sources and the SOS of the in-

terference. Some filters are derived to extract a single source sig-

nal [9–16], while others have been derived to extract the sum of

two or more source signals [17, 18]. These methods require a pri-

ori knowledge of the directions of the desired sources or a period

in which only the desired sources are active. Another drawback of

these methods is the inability to adapt sufficiently quickly to new sit-

uations (e. g., source movements, competing speakers that become

active when the desired source is active). Parametric spatial filters

are often based on a relatively simple signal model (i. e., the received

signal in the time-frequency domain consists of a single plane wave

plus diffuse sound) and are computed based on instantaneous esti-

mates of the model parameters. The advantages of parametric spa-

tial filters are a flexible directional response, a comparatively strong

suppression of noise and interferers, and the ability to quickly adapt

to new situations. However, the common single plane wave signal

model can easily be violated in practice which strongly degrades the

performance of the parametric spatial filters [19].

∗A joint institution of the University Erlangen-Nuremberg and Fraun-
hofer IIS, Germany

To overcome these problems, we have recently proposed an in-

formed linearly constrained minimum variance (LCMV) filter that

provides an arbitrary spatial response for at most L sound sources

being simultaneously active per time-frequency instant [20]. The fil-

ter adapts nearly instantaneously to changes in the acoustic scene by

incorporating parametric information on the sound field, namely L
direction-of-arrival (DOA) estimates and the diffuse-to-noise power

ratio (DNR). The filter minimizes the diffuse and self-noise power

at the filter output while providing a distortionless response for the

L sources. However, the drawback of such distortionless filters is

a rather poor attenuation of diffuse sound and self-noise, especially

for broadside array configurations with only few microphones.

In some applications, sound acquisition with a stronger sup-

pression of diffuse sound and self-noise is desired while a moder-

ate amount of signal distortion can be tolerated. For this purpose,

we propose to incorporate instantaneous parametric information on

the acoustic scene into the design of a minimum mean-squared er-

ror (MMSE) filter, leading to an informed MMSE filter. The pro-

posed filter requires estimates of the power spectral densities of the

L sources, which can be obtained with sufficient accuracy as ex-

plained throughout this paper. The proposed spatial filter has similar

benefits as the informed LCMV filter [20], namely an arbitrary spa-

tial response and a very short response time, but provides a stronger

attenuation of diffuse sound and self-noise at the filter output.

The paper is organized as follows: Section 2 formulates the

problem. In Sec. 3, the informed LCMV filter is reviewed and the

proposed informed MMSE filter is described. In Sec. 4, it is shown

how the required parametric information is estimated. The perfor-

mance of the proposed spatial filter is evaluated in Sec. 5. Section 6

draws the conclusions.

2. PROBLEM FORMULATION

In the following, we consider an array of M omnidirectional micro-

phones located at d1...M . The microphones capture for each time

and frequency a sum of L < M plane waves propagating in an

isotropic and homogenous (diffuse) sound field. The microphone

signals x(k, n) = [X(k, n,d1) . . . X(k, n,dM )]T at frequency in-

dex k and time index n are written as

x(k, n) = A(k, n)xs(k, n) + xd(k, n) + xn(k, n), (1)

where xs(k, n) = [X1(k, n,d1) . . . XL(k, n,d1)]
T are the micro-

phone signals proportional to the sound pressure of the L plane

waves at the first microphone, xd(k, n) denotes the measured dif-

fuse sound field, and xn(k, n) is the uncorrelated and stationary mi-

crophone self-noise. The time and frequency dependent M × L
propagation matrix A(k, n) = [a(k, ϕ1) . . . a(k, ϕL)] contains the

EUSIPCO 2013 1569743225
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propagation vectors a(k, ϕl) = [a1(k, ϕl) . . . aM (k, ϕl)]
T for the

L plane waves. The i-th element of a(k, ϕl),

ai(k, ϕl) = exp
{
 κ ri sinϕl(k, n)

}
, (2)

is the transfer function for the l-th plane wave from the first to the

i-th microphone depending on the DOA ϕl(k, n) of the wave. Here,

ϕl = 0 denotes the array broadside. Moreover, ri = ||di − d1|| is

equal to the distance between the first and the i-th microphone and

κ is the wavenumber. Note that the DOA ϕl(k, n) can vary rapidly

across time and frequency.

Assuming the three components in (1) are mutually uncorre-

lated, we can express the power spectral density (PSD) matrix of

the microphone signals as

Φx(k, n) = E
{
x(k, n)xH(k, n)

}

= A(k, n)Φs(k, n)A
H(k, n)+Φd(k, n)+Φn(k)︸ ︷︷ ︸

Φu(k,n)

. (3)

Assuming further that the L plane waves are uncorrelated, the L×L
signal PSD matrix Φs(k, n) = E

{
xs(k, n)x

H
s (k, n)

}
is diago-

nal and diag{Φs(k, n)}={φ1(k, n), . . . , φL(k, n)} are the powers

φl(k, n) of the L plane waves at the first microphone. Moreover,

Φn(k, n) = φn(k) I (4)

is the time-invariant PSD matrix of the stationary self-noise, where

I is the M × M identity matrix and φn(k) is the self-noise power

which is assumed to be identical for all microphones. The matrix

Φd(k, n) = φd(k, n) Γd(k) (5)

is the time-variant PSD matrix of the diffuse sound. The expected

power φd(k, n) of the diffuse sound is strongly time and frequency

dependent and is assumed to be identical for all microphones. The

ij-th element of the coherence matrix Γd(k), denoted by γij(k),
is the coherence between microphone i and j due to the diffuse

sound. For instance for a spherically isotropic diffuse field, we have

γij(k)=sinc(κ rij) [21] where rij= ||dj − di||.
The aim of the paper is to filter the microphone signals x(k, n)

such that plane waves arriving from specific spatial regions are atten-

uated or amplified as desired, while the diffuse sound and self-noise

are suppressed. The desired signal can therefore be expressed as a

weighted sum of the L plane waves at the first microphone, i. e.,

Y (k, n) = g
T(k, n) xs(k, n). (6)

The weights are given by g(k, n)=[G(k, ϕ1). . .G(k, ϕL)]
T, where

G(k, ϕ) is a real-valued arbitrary directivity function which can be

frequency dependent. Figure 1 shows the magnitude of an example

directivity G(k, ϕ) for which we attenuate a plane waves arriving

outside the spatial window by 60 dB while a wave arriving inside

the spatial window is not attenuated. Clearly, one can design and em-

ploy arbitrary and time-variant directivity functions, e. g., to extract

moving or emerging sound sources once they have been localized.

An estimate of the desired signal Y (k, n) is obtained by a linear

combination of the microphone signals x(k, n), i. e.,

Ŷ (k, n) = w
H(k, n)x(k, n), (7)

where w(k, n) is a complex weight vector of length M . The op-

timal weights are derived in the next section. In the following, the

dependency of the weights w(k, n) on k and n is omitted for brevity.
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Fig. 1. Directivity function |G(k, ϕ)|2 and source positions

3. OPTIMAL SPATIAL FILTERING

3.1. Informed Distortionless Spatial Filter

The informed LCMV filter in [20] provides an optimal trade-off be-

tween different state-of-the-art distortionless spatial filters. The filter

is considered as reference in the following. The weights w(k, n) of

the informed LCMV filter to estimate Y (k, n) are found by mini-

mizing the sum of the self-noise power and diffuse sound power at

the filter output, i. e.,

wiLCMV = argmin
w

w
H
Φu(k, n)w, (8)

subject to

w
H
A(k, n) = g

T(k, n). (9)

Note that the filter weights are recomputed for each time and fre-

quency and depend on the instantaneous DOA of the L plane waves,

which define the propagation matrix A(k, n). Therefore, the filter

adapts nearly immediately to changes in the acoustic scene. Due to

the linear constraints (9), the L plane waves are captured with the

correct gain according to the desired arbitrary directivity function

G(k, ϕ). The solution to (8) subject to (9) is [22]

wiLCMV = Φ
−1
u A

(
A

H
Φ

−1
u A

)−1

g, (10)

where the dependencies on k and n have been omitted and Φu(k, n)
is defined in (3). The estimation of Φu(k, n) is discussed in Sec. 4.

In general, the performance of the distortionless filter in attenuating

the diffuse sound and self-noise depends strongly on the microphone

configuration and the number of microphones M . If M ≫ L + 1,

the number of degrees of freedom to minimize Φu(k, n) in (8) is

high. For the minimum number M = L+1, however, no degrees of

freedom remain. In the worst case, the noise is amplified at the filter

output.

3.2. Informed Minimum Mean-Squared Error Spatial Filter

In the following, we derive the optimal weights w(k, n) based on an

MMSE criterium. The optimal weights provide the MMSE estimate

of the desired signal Y (k, n), i. e.,

wiMMSE = argmin
w

E

{∣∣∣Ŷ (k, n)− Y (k, n)
∣∣∣
2
}

︸ ︷︷ ︸
Jw

. (11)

Given the signal model in Sec. 2, the cost function Jw(k, n) to be

minimized can be written as

Jw = v
H(k, n)Φs(k, n)v(k, n) +w

H
Φu(k, n)w, (12)

2
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where

v(k, n) = g(k, n)−A
H(k, n)w. (13)

The first term in (12) represents the speech distortion while the sec-

ond term represents the power of the residual diffuse plus noise. Set-

ting the complex derivative of Jw to zero, the solution to (11) is

wiMMSE = WiMMSE(k, n)g(k, n), (14)

where WiMMSE(k, n) = [w1 . . .wL] is an M × L matrix given by

WiMMSE =
[
A(k, n)Φs(k, n)A

H(k, n) +Φu(k, n)
]−1

×A(k, n)Φs(k, n).
(15)

The filter weights wiMMSE(k, n) are recomputed for each time and

frequency and depend on the instantaneous DOAs ϕl(k, n). Thus,

the filter adapts quickly to changes in the acoustic scene, given the

DOAs [and Φs(k, n) and Φu(k, n)] can be estimated with a suffi-

ciently high temporal resolution. The estimation of the PSD matrices

Φs(k, n) and Φu(k, n) is explained in Sec. 4.

Note that each filter wl(k, n) contained in WiMMSE(k, n)
provides the MMSE estimate of the corresponding source signal

Xl(k, n,d1) at the first microphone [23]. Since all source signals

are mutually uncorrelated, i. e., Φs(k, n) is diagonal, each filter

wl(k, n) can be represented as a minimum variance distortionless

response (MVDR) filter wMVDR,l(k, n) extracting source l and a

subsequent single-channel MMSE filter Hl(k, n), i. e.,

wl =
Φ−1

u,l al

aH
l Φ−1

u,l al
︸ ︷︷ ︸
wMVDR,l(k,n)

·
φl(k, n)

φl(k, n) + (aH
l Φ−1

u,l al)−1

︸ ︷︷ ︸
Hl(k,n)

. (16)

The PSD matrix of the noise and interference is given by

Φu,l(k, n) = Φu(k, n) +Ai,l(k, n)Φi,l(k, n)A
H
i,l(k, n), (17)

where the columns of Ai,l(k, n) are the L − 1 array steering vec-

tors of the interfering plane waves and Φi,l(k, n) is obtained by re-

moving the l-th row and l-th column from Φs(k, n). Decomposing

WiMMSE(k, n) into the form given by (16) provides more flexibility

in finding an optimum trade-off between the amount of noise reduc-

tion and speech distortion. In fact, one can apply different smoothing

strategies or a lower bound to Hl(k, n) to reduce speech distortion

or to lower artifacts such as musical tones.

4. PARAMETER ESTIMATION

Several parameters need to be estimated for the proposed spatial

filter. The DOAs ϕl(k, n) of the L plane waves can be obtained

with well-known narrowband DOA estimators such as ESPRIT [24]

or root MUSIC [25], whereas the former is used throughout this

work due to its lower computational complexity. The elements of

the propagation matrix A(k, n) are computed with (2). To obtain

Φu(k, n) we assume that an estimate of the self-noise power φn(k)
is available (e. g., estimated during silence). We then compute the

DNR Ψ(k, n) = φd(k,n)/φn(k) with the estimator in [20], which ex-

ploits the computed DOAs ϕl(k, n). With the DNR information and

with (4) and (5), an estimate of Φu(k, n) can be computed as

Φ̂u(k, n) = φn(k)
[
Ψ(k, n)Γd(k) + I

]
. (18)

To determine the signal PSDs diag{Φs(k, n)}, let us define

Φ̂v(k, n) = Φx(k, n) − Φ̂u(k, n), (19)

which is an estimate of A(k, n)Φs(k, n)A
H(k, n) in (3), i. e.,

Φ̂v(k, n) = A(k, n)Φs(k, n)A
H(k, n) +∆, (20)

where ∆ is the estimation error. Equation (20) can be written as

Φ̂v(k, n) =
L∑

l=1

φl(k, n) a(k, ϕl)a
H(k, ϕl)︸ ︷︷ ︸

Cl(k,n)

+∆. (21)

We estimate the signal PSDs φ(k, n)=[φ1(k, n) . . . φL(k, n)]
T via

the least-squares approach by minimizing the error ∆, i. e.,

φ̂(k, n) = argmin
φ

∥∥∥vec
{
Φ̂v(k, n)

}
−B(k, n)φ

∥∥∥
2

, (22)

where vec{X} are the columns of matrix X stacked into one column

vector and B(k, n) =
[
vec{C1(k, n)} . . . vec{CL(k, n)}

]
. The

solution to the minimization problem (22) is

φ̂(k, n) =
(
B

H
B
)−1

B
H

vec
{
Φ̂v(k, n)

}
. (23)

5. SIMULATION RESULTS

A reverberant shoebox room (6.95×5.39×2.39 m3, RT60≈490ms)
and an uniform linear array with M = 5 omnidirectional micro-

phones (3 cm microphone spacing) was simulated using the source-

image method [26,27]. Two speech sources are located at a distance

of 1.25m at angles ϕA = −51◦ and ϕB = 31◦ (cf. Fig. 1). The

recorded signals consist of 1 s silence, single talk (source A), double

talk, and single talk (source B). White Gaussian noise was added to

the microphone signals resulting in a segmental signal-to-noise ra-

tio (SegSNR) of 28 dB. The sound was sampled at 16 kHz and trans-

formed into the time-frequency domain using a 256-point short-time

Fourier transform (STFT) with 50% overlap.

We assume L=2 plane waves in the model in (1) and consider

the directivity function G(k, ϕ) in Fig. 1, i. e., we aim at extract-

ing source B (desired source) without attenuation while attenuating

the power of source A (interferer) by 60 dB. We compare the in-

formed LCMV filter (Sec. 3.1) and the proposed informed MMSE

filter (Sec. 3.2). The parametric information is estimated as ex-

plained in Sec. 4. The required self-noise power φn(k) is computed

at the beginning of the signal when the sources are inactive. The ex-

pectation in (3) is approximated by a recursive temporal averaging

filter with a time constant of τ = 50ms. With this averaging length

the parameters in Sec. 4 are updated sufficiently fast to track typical

changes in the acoustic scene such as moving or emerging sources.

5.1. Parameter Estimation Performance

This section studies the performance of the Φs(k, n) and Φu(k, n)
estimation. We assume that the DOAs of the sound are given as a

priori information, i. e., ϕ1(k, n) = ϕA and ϕ2(k, n) = ϕB.

Figure 2 shows the true and estimated power φ2(k, n) and

φ̂2(k, n) of the second source, i. e., it shows the second element of

diag{Φs(k, n)} and diag{Φ̂s(k, n)}, respectively. The time domain

signals at the bottom of the figure indicate which source is active

when. Figure 2 shows that the source power was determined accu-

rately for most time-frequency bins. However, at lower frequencies,

power of the first source was leaking into φ̂2(k, n) (dashed circle)

or φ̂2(k, n) was underestimated (solid circle). The leaking power

(dashed circle) is the reverberation due to the first source that was not

3
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Fig. 2. Upper two plots: true and estimated power of the second

source. The same temporal averaging was applied to φ2(k, n) as

used for computing φ̂2(k, n). Lower two plots: time domain signals

of the two sources.

completely subtracted in (19) due to an underestimated diffuse-plus-

noise PSD matrix Φu(k, n). This underestimation resulted from an

underestimated DNR Ψ(k, n) in (18). Equivalently, the underesti-

mation of φ̂2(k, n) (solid circle) resulted from an overestimation of

Φu(k, n) due to an overestimated Ψ(k, n).
From the estimated parameters we can compute the optimal

weights wiMMSE, which, as described in Sec. 3.2, can be decom-

posed into a weighted sum of L separate filters. As shown in (16),

each separate filter can be expressed as an MVDR filter and sub-

sequent single-channel MMSE filter Hl(k, n). Figure 3(a) shows

the ideal filter Ȟ2(k, n) when considering the true Φs(k, n) and

Φu(k, n), while Fig. 3(b) shows the filter H2(k, n) following from

the estimates Φ̂s(k, n) and Φ̂u(k, n). Both filters attenuate strongly

the output of the prior MVDR filter when mainly the noise and

interferer is present. The estimated filter H2(k, n) does not differ

much from the ideal filter Ȟ2(k, n), besides at the lower frequen-

cies due to estimation errors of Φs(k, n) and Φu(k, n) mentioned

before. Therefore, for some time-frequency bins, H2(k, n) does

not suppress interfering power and noise as desired (dashed circle),

or attenuates the desired signal (solid circle) leading to speech dis-

tortion. Nevertheless, the estimated filter is sufficiently accurate to

enhance the signal, as shown in the next section.

5.2. Overall Performance

In the following, we evaluate the performance of the proposed spatial

filter wiMMSE when the DOAs ϕ1(k, n) and ϕ2(k, n) are not given

as a priori information, but estimated using ESPRIT [24]. The ES-

PRIT algorithm included a recursive temporal averaging filter with

a time constant of τ = 50ms. As mentioned before, this typically

yields a sufficiently high temporal resolution to track changes in the

acoustic scene. Table 1 shows the performance of wiMMSE in terms of

SegSNR, segmental signal-to-interference ratio (SegSIR), segmental

signal-to-reverberation ratio (SegSRR), PESQ, and mean log spec-

tral distortion (LSD). The values are computed over the more dif-

ficult double talk part. For comparison, we also show the results
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Fig. 3. True and estimated single-channel Wiener filter H2(k, n)

obtained with the informed LCMV filter (wiLCMV) and the ideal in-

formed MMSE filter (w̌iMMSE), which was computed from accurate

information on Φs(k, n), Φu(k, n), and the DOAs. Note that for

PESQ, the direct path signal of source B as received by the first mi-

crophone was used as a reference. Moreover, the LSD given the

weights w was computed as [28]

LSD(n)=





2

K

K/2−1
∑

k=0

∣

∣L
{

YB(k, n)
}

−L{XB(k, n,d1)}
∣

∣

2





1

2

, (24)

where YB(k, n) is the signal of the desired source B at the filter out-

put, i. e., YB(k, n) = wHa(k, ϕB)XB(k, n,d1). The log spectrum

is L{X(k, n)} = 20 log10 |X(k, n)| which was limited to a dy-

namic range of 50 dB. The mean LSD is found by averaging (24)

over all double talk frames.

The values in Tab. 1 show that the proposed informed MMSE

filter (wiMMSE) outperformed the informed LCMV filter (wiLCMV) in

terms of SegSIR, SegSNR, and SegSRR. The proposed MMSE filter

therefore better attenuates the noise and interferer than the LCMV

filter. As expected, the informed LCMV filter provides a very low

LSD (i. e., nearly no distortion of the desired signal), while the dis-

tortion is higher for the MMSE-based filters. The ideal informed

MMSE filter (w̌iMMSE) outperforms the estimated filter (wiMMSE) in

terms of SegSIR, SegSRR, and LSD. Compared to the unprocessed

signals (∗), all filters strongly improve the signal by means of noise

and interference reduction. In terms of PESQ, all spatial filters im-

prove the signal compared to the unprocessed signal.

6. CONCLUSIONS

An informed minimum mean-squared error (MMSE) filter was pro-

posed that provides a desired spatial response for L sources being

simultaneously active for each time and frequency in a noisy and

reverberant environment. The filter exploits instantaneous informa-

tion on the direction-of-arrival of L plane waves and considers the

power spectral density (PSD) matrices of the diffuse sound, self-

noise, and source signals. Estimators for the required PSD matrices

4
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SegSIR SegSNR SegSRR mean LSD PESQ

∗ 13.3 27.6 −2.8 - 1.4

wiLCMV 25.8 26.2 −0.5 1.4 1.6

wiMMSE 27.2 31.7 1.0 2.9 1.6

w̌iMMSE 32.0 28.5 3.2 2.7 2.1

Table 1. Performance of the spatial filters [∗ unprocessed]. Values

in dB. The signals were A-weighted before computing the SegSIR,

SegSRR, and SegSNR.

were proposed that are sufficiently accurate to reduce reverberation,

self-noise, and interfering sounds with a tolerable amount of signal

distortion. Simulations results for a highly reverberant environment

demonstrate the practical applicability of the proposed filter.
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