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ABSTRACT 

 
The study of tumor biology and heterogeneity is of 
high importance for identifying viable cancer 
therapeutics. A high content RNAi screen is carried 
out to identify genes that induce varied tumor 
morphologies. We present a novel automated pipeline 
to identify and interpret gene function by extracting 
morphological features of tumor cell aggregates , in 
large scale 3D RNAi screens. We use a “bag of  
words” based clustering approach to distinguish 
multiple phenotypes. Functional analysis of genes 
underlying the phenotypic clusters reveals the role of 
growth and invasion modulators in shaping tumor cell 
morphology and heterogeneity. 
 

Index Terms— image analysis, image processing, 
machine learning, high content screening, textural 
features, affinity propagation clustering, earth movers 
distance 
 

1. INTRODUCTION 
 

High content throughput screening is an experimental 
approach applied to identify the role of RNAi in 
altering cellular phenotype and to study the effects of 
therapeutics on diseased cell morphology and cellular 
product expression.  
      High content screening technology has been used 
to quantify spatial and temporal variation in cellular 
events. Automated image-based screening facilitates 
the detection of perturbagens that alter the morphology 
or abundance of biological molecules.  
      A high throughput kinome siRNA screen is carried 
out in collaboration with the High Throughput 
Screening Core at the UT MD Anderson Cancer 
Center, where a set of 880 kinase genes (Dharmacon) 
were knocked down to study their effects on tumor 

architecture and hypoxic response induced in tumor 
spheroids. The screen was carried out in a 96 well 
plate format and each well corresponds to a certain 
kinase that has been silenced. Ten such plates were 
used during the course of the experiment and each 
plate had 88 wells in use for cell culture. Thus, the 
screen was carried out within 880 wells with each well 
associated with 10 imaging fields. The final dataset 
consists of 8800 images (10 images/well * 880 wells). 
Each image comprises groups of cell aggregates 
(referred to as “blobs” in the remainder of this paper).        
       Our analysis involves detection of these tumor cell 
blobs to extract textural and morphological features to 
quantify and discriminate the varied tumor 
morphologies. These different morphologies are 
representative of proliferation or growth-inhibition of 
the tumor cells due to hypoxia induced by gene 
knockdown.  
      Clustering of the cellular morphologies represented 
by feature vectors will provide a key insight into the 
role of these underlying genes in proliferation or 
growth inhibition of these tumor cells. Therefore, we 
have created a pipeline that allows for the inference of 
gene function and their potential effects on tumor cells 
via analysis of image-derived phenotypes. The overall 
workflow in the proposed pipeline is presented in 
Figure1. 
 

2. METHODS AND RESULTS 
 

2.1. Image Preprocessing  
 
In order to detect and retain data pertaining to the 
tumor cells in the acquired image dataset, field-
specific masks are generated. An image processing 
workflow is developed using the Pipeline Pilot 
software from Accelrys Inc. The tool allows us to  
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Figure 1: The workflow adopted for our analysis. 
 
automate the common steps involved in generating the 
masks for the 8800 images involved in the analysis. 
         For cell segmentation, we use a morphological 
gradient, suitable erosion and dilation operations, 
followed by binarization. Individual blobs are detected 
using neighbourhood connectivity  followed by a 
filtering operation to remove spurious blobs. 
         Every blob is accessed by its assigned label, 
cropped from the image using a bounding box and 
processed individually. Morphological and textural 
features are now computed on these blobs to define a 
feature vector of texture patterns and structural 
geometry. 
 
2.2. Feature Extraction 
 
Second order statistics or co-occurrence matrix 
features have been used extensively for texture 
extraction and classification [1][2]. Tumor architecture 
and its varied morphologies can be assessed and 

analyzed by computing textural and morphological 
features associated with the invasive and the non-
invasive (growth inhibitory) phenotype. Gray level co-
occurrence matrices are employed to compute textural 
features on individual blobs with symmetric offsets at 
angles of 0, 45, 90 and 135 degrees. Eighteen textural 
descriptors (including contrast, energy, entropy and 
correlation) are computed and tabulated for each 
individual blob within a field.   
        In addition several morphological features (such 
as area, diameter, perimeter, solidity and form factor) 
are computed for these blobs (tumor spheroids). 
Consequently, each blob can now be represented with 
a 29(18+11) dimensional feature vector. This 
procedure is iterated over all the blobs identified 
across the acquired image data set to obtain a feature 
matrix (rows representing blobs across plates and 
columns representing features).The features are 
normalized to zero mean and unit variance before 
further processing (as shown in block 2 in Figure 1).  
 
2.3. Adjusting for contrast 
 
Since texture features are sensitive to grayscale 
variation, we employ a contrast-adjustment step to 
facilitate comparison across images. This step is also 
intended to aid in data interpretability and 
visualization. The images of the blobs are subjected to 
contrast-adjustment and the co-occurrence matrices are 
computed on these contrast-adjusted gray level images 
using symmetric offsets. Such adjustment in contrast 
may lead to detecting subtle changes in textures and 
therefore assist in categorization of tumor-associated 
phenotype. 
 
2.4. Normalized histogram representation of wells 
 
The primary goal of the analysis is to discover 
functional phenotypes from each well in such high 
content data. Following a bag-of-words [3][4] 
paradigm, we represent each well as a histogram over 
clusters, where a cluster label is a word and the blobs 
within a well is a bag of words representing cluster 
memberships (shown in block 3 of Figure 1). These 
clusters are derived via clustering image features of 
blobs within fields. The bag of words approach is 
illustrated in Figure - (2). 
     Using the 29 features extracted for each blob, we 
use a Gaussian Mixture Model algorithm for clustering 
all the blobs (across all the images). The Bayesian 
Information criterion (BIC) [5]based on model 
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clustering is used to determine the optimal number of 
clusters. The data from the contrast-adjusted and 
unadjusted analyses are used as inputs to the GMM 
algorithm. 
 

 

 
Figure (2A and 2B):  Normalized histograms for well 880 
containing 40 cluster bins on the horizontal axis and the 
number of blobs per cluster bin in the vertical axis for the 
unadjusted and adjusted cases respectively. 
 
       The algorithm sweeps between the cluster ranges 
of 10 to 80 for multivariate data models. The clusters 
are allowed to be flexible in volume and orientation. 
The Bayesian Information criterion (BIC) reveals that 
40 is an optimal cluster size. Thus, the blobs are 
grouped into 40 distinct clusters by employing the 
kmeans clustering algorithm. Each well corresponds to 
a cluster membership vector –with each element 
representing a cluster label corresponding to a specific 
blob. Figure-2 represents the histograms generated for 
well 880 for both the contrast-adjusted and unadjusted 
cases. 
 
2.5. Non-metric Multidimensional Scaling 
 
Non-metric Multidimensional Scaling (NMDS) is a 
dimensionality-reduction technique that takes as input 
the set of pairwise distances between data points in 
higher dimensional space. Since the data that we 
choose to embed are in the form of normalized 
probability distributions, we choose the Earth Movers 
Distance as a metric of distance between data points. 

This is a well-known metric and has commonly been 
used  for its applications in computer vision problems 
like image retrieval [6][7][8].  
      The Earth Movers Distance (EMD) between 
positive, one dimensional and equally weighted 
histograms can simply be calculated using cumulative 
distribution functions (CDF) as follows[9]. 

!"# =    |!"# ! − !"# ! |
!

!!!

   

Where, N is the total number of histograms or cluster 
member ship vectors and X and Y are the cluster 
membership vectors.  
          The chi-square distance metric is also a viable 
metric on probability distributions[10] .It is also 
employed to compute the pairwise distance matrix 
between histograms and compared with EMD for 
lesser stress in embedding .  
        We compare the Kruskal stress values [9] of the 
points in the lower dimensional embedded space under 
both metrics (EMD and chi-squared) for the contrast-
adjusted and unadjusted cases. We choose the distance 
metric that provides the least stress (Table 1). 
         Based on Table 1, we use the EMD distance 
metric for three-dimensional embedding, since this has 
the lowest stress and also yields visually interpretable 
embedding. Figure-3 depicts a plot obtained after 
multidimensional scaling with EMD as the chosen 
parameter to compute the dissimilarity matrix between 
the histogram distributions. 
 
2.6. Clustering 
 
Affinity Propagation (AP) is a popular clustering 
algorithm [11] that takes as input the real valued 
similarities between the data points to gauge the  
exemplars (similar to cluster representatives). This 
algorithm has the advantage over other k-center 
clustering algorithms in that it requires no predefined 
number of clusters and the outcome is not 
initialization-dependent. The affinity propagation 
algorithm assumes that every point in the dataset could 
be an exemplar to begin with, and by passing real-
valued messages between points certain preferences or 
exemplars are eventually generated along with their 
clusters. This algorithm has also been shown to 
produce clusters with  lesser error rate in comparison 
with other unsupervised clustering algorithms[12]. 
        The scaled lower dimensional data set obtained 
from non-metric MDS (NMDS) is fed as the input to 
the AP clustering algorithm. The clustering algorithm  
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 Stress (With 

Contrast -
Adjustment ) 

Stress (Without 
Contrast - 

Adjustment) 
Three 
dimensional 
Embedding 
 

  

Earth Movers 
Distance 

0.0664 0.0649 

Chi-Squared 
Distance 

0.1657 0.1412 

   
Two dimensional 
Embedding 

  

Earth Movers 
Distance 

0.0923 0.1066 

Chi-Squared 
Distance  

0.2380 0.1886 

 
Table(1):Kruskal stress values for both distance metrics in 
two dimensional and three dimensional embedding are 
listed. Lower is better. 
 

 
 

Figure (3): Plot obtained after non-metric multidimensional 
scaling with EMD as distance metric from the contrast-
adjusted analysis. 
 

 
Figure (4): The plot obtained from the AP clustering 
algorithm with two clusters (the optimal cluster number). 

 
is applied to the data for both contrast-adjusted and 
unadjusted modes of analysis. The resulting clusters 
contain points representing 880 different wells in the 
embedded space. 
          Figure- 4 shows a plot obtained from the affinity 
propagation algorithm separating the data into two 
optimal clusters for both the analyses. The derived 
clusters have 425 and 455 wells (genes) respectively. 
 
2.7. IPA Analysis 
 
The genes underlying the two clusters are analyzed 
using the Ingenuity Pathway Analysis (IPA) 
software[13].The IPA tool aids in the examination of 
the relevant canonical pathways, gene ontology, and 
functional enrichment underlying an input set of genes. 
This section contains a brief summary of the top 
signaling pathways and biological functions as 
reported by the IPA software for the two clusters 
obtained from the affinity-propagation clustering step. 
       The genes present in cluster 1 have functions in 
the networks that contribute to cancer and nervous 
disorders and growth. The biological functions 
represented by cluster 1 are tumorigenesis of benign 
and malignant tumor, immune cell trafficking, 
organism survival, hematological system development 
and connective tissue development. Immune cell 
trafficking and hematological system development 
involves genes that facilitate immune cell movement 
and migration, proliferation, development and 
activation. A large number of genes also contribute to 
the growth of tumor and formation of solid tumor.      
Several genes in cluster 1 are associated with 
proliferation of tumor cell lines and organism death. In 
totality, cluster 1 may be considered to represent a 
“growth-inhibition” phenotype as it contains genes that 
when suppressed or altered may cause inhibition of 
tumor growth. 
        On the other hand, cluster 2 predominantly 
contains genes that are related to cancer and 
developmental disorders. The genes in this cluster 
have relevance to tissue development, tissue 
morphology and hematological system development. 
The genes found in cluster 2 in the aforementioned 
categories are responsible for the quantity of immune 
cells present, positive selection of T-lymphocyte, 
disorganization of blood vessels, the morphology of 
endothelial cells and hypertrophy of normal and 
endothelial cells. There are also significant number of 
genes that contribute to the growth and proliferation of 
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normal cells, homeostasis and cell death, organization 
of blood vessels, proliferation of endothelial cells and 
fibroblasts, formation of focal adhesions, formation of 
cellular adhesions that are vital for cell viability and 
function. Therefore, broadly looking at the biological 
functions that are represented in this cluster we may 
consider cluster 2 to contain genes which when 
suppressed or altered may lead to invasive cancer cell 
formation, perhaps representing an “invasive 
phenotype”.  
        For genes underlying clusters based on the 
contrast-unadjusted case, we observe similar functions 
as the clusters described above. However, those results 
are not presented due to ambiguity in ontological basis 
within those clusters.   
 

3. CONCLUSION 
 
In this work, we present an analytic workflow capable 
of processing high content images from large-scale 
RNAi screens. The pipeline is capable of processing 
blob-level image data, thereby accounting for the 
heterogeneity in the image fields. Using a “bag-of-
words” representation, we use a combination of image-
analysis, clustering and classification of the blobs into 
distinct cell phenotypes. 
         There were two predominant cell phenotypes that 
are recognized from the dataset - “cell death” and an 
“invasive” phenotype. The biological functions of 
these genes associate with cell phenotypes related to 
tumor invasion and growth- inhibition of tumor cells. 
         In addition, through comparison of the two 
modes of analyses we have shown that contrast- 
adjustment is a useful preprocessing step in order to 
obtain physiologically-relevant phenotypes. 
         In future work, we aim to explore other image 
features that might represent biologically-relevant 
phenotypes and to perform a systematic evaluation of 
multiple clustering algorithms for phenotypic 
classification. Furthermore, we aim to integrate hits 
from such HTS RNAi screens with other in-vivo data 
to identify gene hits that might represent viable drug 
targets.  
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