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MATCHED GAUSSIAN MULTITAPER SPECTROGRAM
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ABSTRACT

A novel multitaper spectrogram estimator for Gaussian func-
tions is proposed. The multitapers are the Hermite functions
and a fixed number of few multitapers are used in the estimate.
The weighting factors of the different spectrogram functions
are optimized to give the approximative Wigner distribution
for the Gaussian function. The performance of the estimator
is investigated in terms of resolution and cross-term reduc-
tion in the time-frequency domain. Additionally, a simula-
tion example shows the robustness against white noise distur-
bances. The performance of the new estimator is compared to
the Wigner distribution, the usual spectrogram as well as the
Choi-Williams and the Born-Jordan distributions.

Index Terms— time-frequency, multitaper, multiple win-
dow, Hermite function, Gaussian, matched

1. INTRODUCTION

In the area of time-frequency analysis, a large number of time-
frequency distributions have been proposed for different ap-
plications. From time-frequency concentration viewpoint, the
Wigner distribution is the optimal choice. However, so called
cross-terms arise for multi-component signals and these cause
severe problems in the interpretation of the Wigner distribu-
tion. Today, a huge number of other time-frequency distri-
butions exist with different ability to suppress the resulting
cross-terms from the Wigner distribution, [1].

A computationally efficient algorithm that corresponds to
a time-frequency distribution can be found using a multita-
per spectrogram, especially if the number of averaged spec-
trograms can be small, [1, 2]. The phrase multitaper (mul-
tiple window) was originally introduced for stationary pro-
cesses in [3]. The Hermite functions are optimal in the as-
pect of time-frequency localization and orthogonality in the
time-frequency domain (in contrast to only considering the
frequency domain), [4]. This property has made them to be-
come often used as multitapers for spectrogram estimation of
non-stationary signals/processes, [5, 6, 7, 8].

Thanks to the Swedish Research council for funding.

In some contributions, the weighting of the different mul-
titaper spectrograms is optimized for fixed Hermite functions
of a model spectrum, [5, 9]. In many practical cases, the spec-
trum of the signal to be estimated is unknown, but more vague
information could be available, e.g., approximate concentra-
tion and resolution of time-frequency components.

In this paper, a matched Gaussian function estimator is
derived in the time-frequency domain using a fixed number
of Hermite functions and optimizing the weighting of the re-
sulting multitaper spectrogram. The theoretical expression
for the spectrogram of a Gaussian function windowed with a
Hermite function has recently been derived in [10]. The pro-
posed method is evaluated for resolution properties and for
disturbances of white noise.

The paper is organized as follows: section 2 introduces
the multitaper spectrogram composition of a time-frequency
kernel. In section 3, the matched Gaussian multitaper spec-
trogram is presented and the effect of erroneous scaling of
the Hermite functions is investigated. Section 4 evaluates and
compares the proposed method with a number of other time-
frequency estimators that are well known for good resolution
properties and efficient cross-term reduction. The paper is
concluded in section 5.

2. THE MULTITAPER SPECTROGRAM

The multitaper spectrogram is defined as

Sx(t, ω) =

K∑
k=1

αk

∣∣∣∣∫ ∞
−∞

h∗k(t− t1)x(t1)e−iωt1dt1

∣∣∣∣2 , (1)

where x(t) is the signal and αk, k = 1 . . .K, are the weights.
The windows hk(t), k = 1 . . .K, are the Hermite functions,
defined as

hk(t) =
1√

π
1
2 2(k−1)(k − 1)!

Hk−1(t)e−
t2

2 , k = 1, 2 . . . ,

where

Hk(t) = (−1)ket
2 dk

dtk
e−t

2

, k = 0, 1 . . . .
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The multitaper spectrogram Sx(t, ω) can be expressed as the
quadratic class of time-frequency distributions, see e.g., p.188
in [1], using t1 = t′ + τ

2 and t2 = t′ − τ
2 ,

Qx(t, ω) =

∫ ∞
−∞

∫ ∞
−∞

rx(t′, τ)ρMT (t− t′, τ)∗e−iωτdt′dτ,

(2)
where we identify the instantaneous autocorrelation function

rx(t, τ) = x(t+
τ

2
)x∗(t− τ

2
), (3)

and the multitaper time-lag kernel

ρMT (t, τ) =

K∑
k=1

αkhk(t+
τ

2
)h∗k(t− τ

2
) =

K∑
k=1

αkρ
hk(t, τ).

(4)
The Wigner distribution of the signal is

Wx(t, ω) =

∫ ∞
−∞

rx(t, τ)e−iωτdτ, (5)

and the multitaper time-frequency kernel is

WMT (t, ω) =

∫ ∞
−∞

K∑
k=1

αkρ
hk(t, τ)e−iωτdτ,

=

K∑
k=1

αkW
hk(t, ω). (6)

3. A MATCHED GAUSSIAN MULTITAPER
SPECTROGRAM ESTIMATOR

A Gaussian windowed signal

x(t) = g(t− t0)e−iω0t, (7)

where the unit-energy Gaussian function is

g(t) = π−
1
4 e−

1
2 t

2

, −∞ < t <∞ (8)

is often used to model a short non-stationary signal. The
quadratic class of distributions obey time-frequency shift-
invariance Sx(t − t0, ω − ω0) = Sg(t, ω), meaning that the
further analysis can be restricted to x(t) = g(t). In [10], the
Gabor spectrogram (using a Gaussian window) of a Hermite
function, is derived, using the circular symmetry properties of
the Gaussian function as well as the Hermite window. Adapt-
ing this result, shifting the k:th Hermite function to be the
window function and the Gaussian window to be a Gaussian
signal, the resulting Hermite function windowed spectrogram
for the signal in Eq. (8) is

Shk
g (t, ω) =

1

2k−1(k − 1)!
(t2 + ω2)(k−1)e−

1
2 (t

2+ω2).

The Wigner distribution of the Gaussian function is

Wg(t, ω) = 2e−(t
2+ω2), (9)

and it can be shown that

Wg(t, ω) =

∞∑
k=1

αkS
hk
g (t, ω), (10)

if one uses x = − 1
2r

2 = − 1
2 (t2 + ω2), giving Eq. (9) equal

to Eq. (10) as

2e2x =

∞∑
k=1

αk
1

(k − 1)!
(−x)(k−1)ex.

We find

ex =
1

2

∞∑
k=1

αk
1

(k − 1)!
(−x)(k−1),

where the terms in the series expansion ex =
∑∞
n=0

xn

n! with
αm = 2 and αm+1 = −2 for m = 2k − 1 can be identified.
However, an infinite sum of multitaper spectrograms is of no
use in practical calculations, but if the number of terms in the
sum is limited, i.e., K in Eq. (1) is assumed to be small, the
computational effort would be reasonable.

Fixing K and minimizing the total squared error with re-
spect to αk, k = 1 . . .K,

emin = minαk

∫
t

∫
ω

(
K∑
k=1

αkS
hk
g (t, ω)−Wg(t, ω)

)2

, (11)

will give the low-rank approximate Wigner distribution for
the Gaussian function as a weighted multitaper spectrogram
estimate, with the weights αk and the Hermite functions
hk(t) as window functions, k = 1 . . .K. The proposed
method is named Matched Gaussian MultiTaper spectrogram
(MGMT ), presented as MGMTK for the K windows that
are chosen.

The resulting weights, for some examples of fixed K, is
seen in Figure 1a). For K = 2, the resulting weights are
α1 ≈ 2 and α2 ≈ −1 (blue stars). For larger values of
K, the resulting weights are closer to the theoretical calcu-
lation above for infinite K, i.e., alternating between values
closer to 2 and −2. These weights are applicable for a Gaus-
sian function and corresponding optimal Hermite functions
disregarding the scaling of the parameter r. In Figure 1b),
the resulting multitaper spectrogram of the Gaussian function,∑K
k=1 αkS

hk
g (t, ω) for different values of K (blue, green and

red solid lines) are shown together with the true Wigner dis-
tribution Wg(t, ω), (cyan dashed line) for r =

√
t2 + ω2. It

is seen that also for low values of K, K = 2 and 3, the mul-
titaper spectrogram is a close approximation to the Wigner
distribution.

The MGMT spectrogram gives a small error when the
optimal Hermite functions are used. However, in a practi-
cal application, the scaling of the Hermite windows has to be

2
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Fig. 1. a) The resulting weights of the MGMTK spectro-
gram for different fixed values of K; b) the corresponding
MGMTK spectrograms of the Gaussian function for the dif-
ferent values of K together with the true Wigner distribution
Wg(t, ω) for r =

√
t2 + ω2.

given from some a priori information or estimated from data.
This might cause certain errors in the final estimate. We in-
vestigate how different scaling of the Hermite functions effect
the final error, when applied as windows together with the op-
timal weights. The result is seen in Figure 2 where the aver-
age squared errors of the MGMT spectrogram for different
fixed values of K are plotted when the set of Hermite func-
tions are erroneous scaled compared to the Gaussian function
to be estimated. The error is calculated as the average over
the total time-frequency domain and the test signal is the 128
sample complex-valued low-frequency component of the sig-
nal shown in Figure 3. The scale on the x-axis of Figure 2 is
given as rg/rh where rg represents the scale of the Gaussian
function and rh the scaling of the set of Hermite functions
used in the estimation. The smallest errors are, as expected,
given for rg = rh but the effect of erroneous scaling of the
Hermite functions are not very large, which indicates that the
estimator would perform rather well also when the scaling of
the Gaussian function is unknown or estimated.

4. EVALUATION

The MGMT spectrogram is compared with some quadratic
class methods that are well known for good resolution proper-
ties and efficient cross-term reduction. The test signal is given
as two complex valued Gaussian components that are moved
closer together in time as well as in frequency. The signal is
exemplified in Figure 3, where the first component is located
at n = 128 and ω = 2π0.1 and the second at n = 288 and
ω = 2π0.15, (ω = 2πf ), i.e., the time difference is ∆t = 160
and the frequency difference is ∆f = 0.05. Each component
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Fig. 2. The mean squared error for erroneous scaling of the
Hermite functions used as window functions of theMGMTK
spectrogram. The scale on the x-axis is given as the ratio
between the scale rg of the Gaussian function to be estimated
and the scale of the Hermite functions rh.

is of length 128 samples. The sum of the Wigner distributions
of the two individual components are used as the true spec-
trum in the comparisons. In the calculations, the signal is 512
samples long and the number of FFT-samples is 1024.

The two components are moved closer to each other in
time- as well as in frequency and the squared error between
the true spectrum and the estimate of the sum of the two com-
ponents using the different methods. The mean of the error is
calculated for all (512 X 1024) values in the time-frequency
grid. The results are shown in Figure 4, where the MGMTK
spectrograms of fixed value K = 2, 3 and 6 are compared
to the Choi-Williams distribution, [11], for different values of
the exponential decrease (exp.d.) parameter, and to the Born-
Jordan (Sinc) distribution, see e.g., [1]. Both of these methods
are well known to reduce cross-terms and keep auto-term res-
olution. The unweighted spectrogram, using the optimal first
(unit-energy) Hermite function as window, is also included
in the comparison. The Wigner distribution of the sum of
the components are not included in the figure as this value is
many times larger than the axis shown, due to the cross-term
between the two components, (mean squared error ≈ 15).

It is clearly seen that the error for the MGMT spectro-
gram (red lines) is superior to the other methods when the
components are further away from each other. Especially
does K = 6 and K = 3 give a better result than the Choi-
Williams distribution (blue dashed lines, 2 different exp.d.
values, 0.05 and 0.2) as well as the Born-Jordan distribu-
tion (dotted pink line). The spectrogram (green dash-dotted
line) gives the largest error. For components that are closer
together than ∆f = 0.04 and ∆t = 128, the MGMT2

3
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Fig. 3. Example of the test signal with two complex valued
Gaussian components where ∆t = 160 and ∆f = 0.05; a)
The real value of the time-signal; b) the sum of the Wigner
distributions of the two components, which is used as the true
signal in the comparison; c) the test signal with white noise
disturbance of standard deviation σ = 0.5.

gives a similar result as the Born-Jordan distribution, where
MGMT3 and MGMT6 give larger errors.

4.1. White noise disturbance

To investigate the robustness of the MGMT spectrogram
against disturbances, a white complex valued circular Gaus-
sian noise disturbance of standard deviation σ is added to the
testsignal with parameters ∆t = 160 and ∆f = 0.05 pre-
sented in Figure 3. A number of 100 simulations is made
for different realizations of the noise. The phase of the sinu-
soidal Gaussian components of the test signal is also varied
for each realization, uniformly distributed between −π and
π. The mean error of the squared bias and the variance of the
low-frequency component is calculated close around the com-
ponent, for time interval t = 32 to 224 and frequency interval
f = 0.075 to 0.125. The results of the different methods are
shown in Figure 5. The mean of the squared bias in the time-
frequency grid around the components is presented in Fig-
ure 5a) and the mean of the variances for the same grid is pre-
sented in Figure 5b). The squared bias of the MGMT spec-
trograms (red solid lines) are the smallest compared to all the
other methods and we can see that the bias of the MGMT6
is small for moderate disturbances but for larger values of σ,
the smallest error is given by the MGMT2 spectrogram. The
variance of the MGMT spectrogram is however larger than
the usual spectrogram (green dash-dotted line) as well as the
Choi-Williams distribution (exp.d.=0.05) (dashed circled blue
line) and give comparable results to the Born-Jordan kernel
and the Choi-Williams kernel (exp.d.=0.2) (dotted pink line
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Fig. 4. The resulting mean squared error of different methods
comparing to the true Wigner spectrum in Figure 3 when the
components are moved closer in time- as well as frequency.

and dashed blue line), Figure 5b). The squared bias and the
variance are added together resulting in the mean squared er-
ror and the mean value over the time-frequency grid is pre-
sented in Figure 6. For small to moderate disturbances, σ ≤
0.5, (see example of moderate disturbance σ = 0.5 in Fig-
ure 3c)), the performance of the MGMT spectrogram is the
best, where the MGMT3 or MGMT6 should be favored in
the case of small disturbances. For larger values of σ, the
spectrogram gives the smallest error, but the MGMT spec-
trogram is still comparable to the Choi-Williams and Born-
Jordan distributions.

5. CONCLUSION

A matched Gaussian multitaper (MGMT ) spectrogram that
gives the approximate Wigner distribution for a Gaussian
function is proposed. The number of Hermite function win-
dows to be used in the estimate is fixed and then the weights
of the windowed spectrograms are optimized. The resolution
and cross-term reduction performances of the new estimator
is investigated showing that the performance is very high
for components that are well-resolved in the time-frequency
domain. For closer components, the performance for K = 2
windows (MGMT2) is similar to the Born-Jordan distribu-
tion. The performance for white noise disturbances is also
investigated, showing thatK = 3 windows (MGMT3) is bet-
ter than the Born-Jordan distribution for small and moderate
disturbances in the mean square error sense (MSE) and still
comparable for large disturbances. For large disturbances the
usual spectrogram gives the smallest MSE, followed by the
Choi-Williams distribution, (exp.d.=0.05), and the MGMT2.

In summary, the proposed estimator is easily computed
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Fig. 5. Example of the performance for the test signal with
two Gaussian components, and white noise disturbance for
different values of the standard deviation σ; a) the mean of
the squared bias in the time-frequency grid; b) the mean of the
variances in the time-frequency grid. The mean is calculated
around the low frequency component.

using the Hermite functions as windows and the average of
a small number (2 or 3) of resulting weighted spectrograms,
where the weighting factors are independent of the scaling of
data and window functions. The resulting multitaper spectro-
gram estimator has a high performance both in resolution as
well as robustness against noise disturbances.
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