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ABSTRACT

Sudden ventricular arrhythmia is a leading cause of death. It
is important to be able to distinguish between different ar-
rhythmias in order to deliver proper treatment. This study
presents results of linear and quadratic discriminant analy-
sis of normal sinus rhythm, ventricular fibrillation and ven-
tricular tachycardia in different representation spaces, using
different observation lengths. In particular, 0.5 s, 1 s, 2 s
and 4 s segments of electrocardiogram waveforms are con-
sidered, along with their magnitude spectra, and lower dimen-
sional projections of magnitude spectra onto principal compo-
nents. All considered representations are of much higher di-
mension than in prior art. Results suggest that Fourier magni-
tude spectra of 2 s windows, or low dimensional projections,
are sufficient for achieving best classification results. Results
also suggest that additional improvements could be obtained
by considering more sophisticated non-linear decision bound-
aries.

Index Terms— Cardiac arrhythmia, ventricular fibrilla-
tion, ventricular tachycardia, classification.

1. INTRODUCTION

According to the World Health Organisation data, cardiovas-
cular disease (CVD) is the leading cause of death in middle
and high income countries, and among the top ten causes of
death in low income countries [1]. Development of effec-
tive drug treatments that may prevent cardiac arrhythmia is
therefore a high-priority challenge for modern pharmacol-
ogy. For the development of such treatments it is crucial
to have a clear understanding of what distinguishes differ-
ent forms of arrhythmia, and based on that, establish their
precise definitions. Additionally, this is necessary for as-
sisting the design of better automated external defibrillator
(AED) and implantable cardioverter-defibrillator devices. In
1988 an attempt was made to provide standardised objective
definitions of ventricular tachycardia (VT), ventricular fib-
rillation (VF) and other arrhythmias, but it was recognised
that their discrimination typically involves a significant de-
gree of subjective judgement [2]. Current methodology for
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detection of ventricular arrhythmia focuses on classification
without any regard for interpretation. Most classification
schemes make use of heuristic low dimensional represen-
tations of the electrocardiogram (ECG), and use arbitrary
parameter choices. By performing classification using more
natural higher-dimensional representations and standard, well
understood tools, it is hoped that an improvement in classi-
fication accuracy is achieved. Thus, this study has its focus
on achieving the best possible classification accuracy be-
tween sinus rhythm (SR), VT and VF using simple, and well
understood tools. Then, in future work (given good classifi-
cation performance), interpretation of generated models will
be addressed, hopefully leading to more objective criteria for
ventricular arrhythmia definitions.

From a therapeutic point of view being able to differenti-
ate between VF and VT is very important since they respond
to interventions differently and VF is lethal, while VT is not.
There have been many studies into the topic of differentiating
SR from VF, however few studies attempt to differentiate VT
from VF. For VF and VT detection, Thakor et al. proposed
an algorithm which first applies a hard threshold to transform
an ECG segment into a binary sequence, and then performs
a sequential hypothesis test on the average number of zero
crossings until a decision is made [3]. In [4], the authors
proposed an algorithm which uses the energy distribution in-
formation in a wavelet transform domain to differentiate be-
tween VF, VT, and a VT-VF class which contains realisations
that are difficult to categorise as either VT or VF. An algo-
rithm for VF detection based on empirical mode decomposi-
tion (EMD), was proposed in [5]. Counting the time between
turning points was proposed in [6] to differentiate fast-VT,
slow-VT and VF. A comparison of ten methods for differen-
tiating between non-VF and VF, for use in an AED, was pre-
sented in [7]. The same authors later proposed a phase space
method [8] and demonstrate that it outperforms all methods
studied in [7] in its capability to discriminate VF from non-VF
segments. While all these previous works have been yield-
ing gradual improvements, the problem of differentiating be-
tween SR, VT and VF is still not solved sufficiently accu-
rately, the main difficulty being in differentiating between VT



and VF. Some of these studies even resort to creating a cat-
egory specifically for the examples which are difficult to dis-
tinguish [4, 6], but this is not physiologically acceptable, and
does little to assist understanding of the problem. In addition,
all existing classification algorithms use heuristics to derive
some low-dimensional representations of ECG signals.

The goal of this study is a systematic investigation of dis-
crimination between SR, VT, and VF, using as few heuristics
as possible, and for that purpose the simple, but often effective
classifiers, linear discriminant analysis (LDA) and quadratic
discriminant analysis (QDA), are considered. Results from
these simple classifiers are then used to motivate investigation
of non-linear boundaries for future research direction. An-
other issue of interest is the selection of observation length
which is most suitable for discrimination, whilst simultane-
ously trying to minimise detection time. For this purpose,
0.5, 1s,2sand 4 s segments of ECG waveforms are consid-
ered. The considered representation spaces for classification
are all high dimensional spaces compared to prior art.

2. ARRHYTHMIA CLASSIFICATION

2.1. Reference Prior Art

Given an ECG segment x = {z[n],n1 < n < na}, itis
desired to be able to label it as being SR, VT or VF. Often,
discrimination is only required between two classes, one of
which may be a combination of classes; e.g non-VF vs VF or
SR vs arrhythmia or VT vs VF, as these might be most rel-
evant. For comparison, in this paper the phase space feature
representation proposed in [8] is considered, since the authors
demonstrated its superior performance in terms of accuracy
and numerical complexity compared to previously published
algorithms.

The Phase Space Algorithm (PSA) [8] aims at diagnos-
ing whether a defibrillation shock should be delivered, which
amounts to classifying ECG segments as VF or non-VF. The
phase space representation is formed by taking discretised
values of samples z1[n] = z[n] and z3[n] = x[n — k] of
x as pairs in R?, where k is selected to correspond to 0.5 s'.
The discretisation step is chosen such that the complete range
of z1[n] and x5 [n] takes up to 40! unique values. The number
N(x) of visited boxes in this phase space is then found, and
finally, the ratio between the number of visited boxes and the
total number of boxes 7(x) = x(’i , Nmax = 40 x 40 is com-
pared to an empirically determined threshold 7¢presn = O. 15",
If this threshold is exceeded, VF is decided, otherwise non-
VF is decided. Classification using this empirical threshold
is referred to as the Original Phase Space Algorithm (OPS).
Also considered in this study are maximum likelihood (ML)
decision boundaries determined from distributions estimated
using available training data. In particular, probability distri-
butions Py (N (x)) of N(x) are estimated for the three classes

I These parameters are all selected by the original work, [8]

of interest, k € {SR, VT, VF}, and the class of an observed
vector x is predicted according to

C(x) = arg;naxpk(N(x)) (1)

This approach allows classification in the feature space N (x)
between VT and VF, or three way classification. Also in-
troduced is a modification where the phase space is formed
by pairs x1[n] = z[n] and z2[n] = z[n] — z[n — 1], again
discretised so that each take up to 40 unique values. This cor-
responds to the standard notion of a phase space, and it may
be more robust to variations in heart rate. This modification
is referred to as Phase Space Modified (PSM).

2.2. Discriminant Analysis

In order to avoid heuristic feature selection, classification di-
rectly in the domain of ECG waveforms is considered. VT is
considered to occur if 4 or more consecutive ventricular pre-
mature beats (QRS complexes) precede their corresponding
P-wave, independent of the rate[2]. In many cases, but not
all, a 2 s window of ECG is sufficient to capture 4 premature
beats. Thus, a 4 s window is considered. For VF, QRS com-
plexes are no longer discernible [2], which suggests the rate of
cardiac deflections (not heart rate, since the notion is not ap-
plicable) is even higher than that of VT, a 4 s window should
be plenty to capture the disorder. Thus, segments longer than
4 s are not considered. In addition to time waveforms, their
Fourier magnitude spectra are considered, as they abstract the
variability caused by different time alignments which are ir-
relevant for class identity.

At 100 Hz sampling, which is close to the minimal sam-
pling frequency which would result in an apparently distor-
tion free ECG signal, 4 s observation length results in 400-
dimensional feature space, which can make statistical infer-
ence challenging. The problem is dealt with by employing:

(i) Shorter time segments. In addition to 4 s segments,
2 s, 1 s and 0.5 s segments are considered. This achieves a
progressive dimension reduction and also enables assessment
of the effect the observation length on discrimination capabil-
ities.

(ii) Simple classification algorithms. For classification,
first LDA is considered, as in many practical tasks it gives
better results than more sophisticated methods [9], and also
because the linear class boundaries it imposes require a rel-
atively small number of parameters to be estimated; an issue
which could be critical in high dimensional feature spaces,
particularly in the absence of sufficient training data. Finally,
to allow for some flexibility in classification boundaries QDA
is considered.

(iii) Data-driven dimension reduction. Since even with
0.5 s observations QDA requires estimation of a relatively
large number of parameters (50 x (504 3)/2+1 = 1326 [9])
for estimation of the corresponding quadratic boundaries it is



advantageous to consider some systematic dimension reduc-
tion. To achieve this, principal component analysis (PCA) is
performed on magnitude spectra feature vectors of each indi-
vidual class, and 3/NV-dimensional subspaces spanned by the
union of the first IV principal components of each class are
formed. All data are then projected onto these subspaces. Val-
ues of NV considered are 5, 10, and 15, referred to as 5, 10 and
15 principal components (PCs). Preliminary analysis showed
that at least 60% cumulative energy was contained by the first
5 principal directions in all three classes, so further dimension
reduction is not considered. The upper limit on the number of
principal directions considered is set to 15 (45 dimensions),
which exceeds the dimension of 0.5 s magnitude spectra (25).

3. EXPERIMENTAL PROCEDURE AND RESULTS

3.1. Data and Preprocessing

Databases used from Physiobank [10] were the European ST-
T Database (EDB) [11], the Creighton University Ventricular
Tachyarrhythmia Database (CUDB) [12], the MIT-BIH Ar-
rhythmia Database (MITDB) [13] and the MIT-BIH Malig-
nant Ventricular Arrhythmia Database (VFDB) [14]. Only
data that were explicitly labelled as SR, VT or VF were used.
Due to the fact that the databases EDB and MITDB do not
contain many realisations of VT or VF, additional realisa-
tions of VT and VF are taken from VFDB, and further VF
realisations from CUDB. Neither of these databases contain
annotations that have been audited thoroughly, so SR was not
extracted from them. SR was randomly subsampled to the
same amount as VT and VF, which were roughly equal in
amount. This gave approx 6000s pools of each class to draw
observations from.

It is considered that most of the relevant information is
contained in the 40Hz baseband [15] and that preprocessing
with a 30Hz low pass filter does not affect experimental re-
sults [4, 5, 8, 7]. However, based on visual inspection of low-
pass filtered data it was decided that 30Hz cut-off frequency
was too low, so 49Hz low-pass filtering was used, followed
by downsampling to 100Hz. In addition to this, a 0.5Hz high
pass filter was applied to remove wandering baseline [15]. All
ECG records are then normalised so that the squared sum of
each record is equal to the number of samples in the record,
thus making the variance of individual time samples equal to
1.

3.2. Preliminary Results
3.2.1. The Phase Space Algorithm

Empirical probability distribution functions of the filled-
boxes variable N (x) for the PSA and PSM features are shown
in Figure la and Figure 1b, respectively. These distributions
correspond to 8 s observations, as originally considered in
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Fig. 1: Probability distributions of the number of visited boxes variable
N(x), for SR, VT and VF at 8 s observation window. a) PSA feature. b)
PSM feature.
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Fig. 2: Results of OPS, PSA and PSM classification of non-VF vs VF with
0.5, 1, 2, 4 and 8 second segments

[8]. It can be observed from these distributions that both rep-
resentations achieve a relatively good separation of SR from
VT and VF, and lesser separation of VT from VF, which
could be a source of confusion in classifying non-VF vs VF.
Such probability distributions are then estimated for other
observation lengths and used for classification.

Figure 2 shows the accuracy of classification of SR and
VT (non-VF) vs VF with the PSA and PSM features using
ML classification and OPS classification. Classification with
ML estimation was performed as a three way classification,
and confusions between SR and VT were not treated as mis-
classification. Equal amounts of non-VF and VF were used
for testing, according to the 1:1:2 ratio for SR:VT:VF, while
the remainder of data was used for estimating the distribu-
tions. The merit of classification in the PSM representation is
apparent from the results. The generalisation accuracy is es-
timated using 5-fold cross validation — the OPS method does
not have a training phase and is exposed to exactly the same
testing samples as the other methods.

Results for OPS classification are only presented for 8 s
observations in agreement with the original work. In con-
trast with [8], where no pre-selection of test data is made, test
samples are balanced across classes, and different databases
are used for testing and training, which accounts for the dif-
ference in the results of this study and [8].
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Fig. 3: Results of classification in time and magnitude spectrum domains
with varying observation lengths. a) non-VF versus VF. b) VT versus VF

3.2.2. Classification in ECG and magnitude spectra spaces

Figures 3a and 3b shows classification of non-VF versus VF
and VT versus VF respectively in the ECG and magnitude
spectra representations. The observation length is varied from
0.5 s to 4 s. It can be seen that a 2 s window provides best
classification results for non-VF vs VF, and that 4 s windows
achieve some further improvement in the case of VT vs VF
classification. In presenting the main findings in only results
obtained with 2 s windows are shown, as the best compromise
between accuracy and required time for detection.

3.3. Main Experimental Procedure and Results

Figures 4a and 4b respectively show the accuracy of binary
classifications tasks non-VF vs VF and VT vs VF. Classifi-
cation using 2 s observation lengths is considered in the time
domain, magnitude spectrum domain, and in the reduced rep-
resentation spaces described in Section 2.2. Classification is
also considered in the PSA and PSM feature spaces. In all fea-
ture spaces, classification is performed using LDA and QDA,
and additionally using ML estimator in the case of PSA and
PSM features. For LDA and QDA classifiers, the class data
for training and testing are balanced, and 5-fold cross val-
idation is employed in order to obtain a better estimate of
generalisation error. Since the testing datasets are balanced,
only the average classification accuracy is presented, rather
than sensitivity and specificity values since they depend on
the proportion of SR, VT and VF in the test data.

Figure 4a demonstrates that classification in magnitude
spectra performs better than classification directly in the time
domain. Additionally QDA achieves small, consistent im-
provement over LDA. Dimension reduction appears to have
little impact on classification accuracy. Classification of non-
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Fig. 4: Results of classification using 2 second observation length and
time, magnitude spectra, principal components, PSA and PSM representa-
tion spaces. a) non-VF versus VF. b) VT versus VF

VF vs VF is better in all high dimensional representation
spaces than in the PSA and PSM representation spaces.

Figure 4b shows that for classification of VT vs VF mag-
nitude spectra representations achieves better performance
than classification directly in the time-domain. Here, QDA
does not perform well at classification unless dimension re-
duction is applied. For QDA classification, the error rate on
the training set is similar to the error rates on the testing sets,
suggesting that overfitting is not occurring, but more likely
that quadratic boundaries are not the proper boundaries to fit
for this classification task. With dimension reduction QDA
classification improves, suggesting that non-linear boundaries
have potential to improve classification accuracy, and hence
that methods more sophisticated than QDA are required.
Again, classification in the PSA and PSM representation
spaces is poor.

4. CONCLUSION

Non-VF vs VF and VT vs VF classification was investigated
using time-domain ECG waveforms, their magnitude spectra,
and projections of magnitude spectra onto lower-dimensional
principal component spaces. The effect of observation length
on classification accuracy was also investigated, and for that
purpose classification was performed using 0.5s,1s, 2 s and
4 s segments of ECG signals. It was observed that a 2 sec-
ond observation length is sufficient for obtaining best or close
to best classification accuracy. This is a new insight consid-
ering that in prior classification methods, windows as long
as 8 seconds are considered [7, 8]. All new representations



considered in this study are of much higher dimension than
representations used in previous studies, with the minimum
dimension used being 15. Experiments showed that signifi-
cant gains in classification accuracy can be achieved by pos-
ing the problem in high-dimensional representation spaces. It
was also observed that classification using magnitude spec-
tra achieves higher accuracy than classification using time-
domain waveforms. Finally, experiments suggest that addi-
tional gains in classification accuracy could be achieved by
employing non-linear decision boundaries, but for that pur-
pose, methods more sophisticated than QDA should be con-
sidered. Interpretation of decision boundaries in terms of
physical features which distinguish VT from VF was not ad-
dressed in this study, as further improvements in their classi-
fication accuracy are expected as a result of future work.
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