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ABSTRACT

In the case of multicomponent AM-FM signals, one bottle-

neck of mode extraction methods such as synchrosqueezing,

is that the reconstruction of the individual components as-

sumes some prior knowledge about their number. In order to

reduce supervision, an entropy-based time-frequency method

had been previously proposed for automatically estimating

the instantaneous number of such components. An analytic

treatment of this approach is first given, assessing its perfor-

mance and limitations, in particular with respect to the Rényi

entropy order and the amplitude ratio. Based on this analy-

sis, an iterative strategy is then proposed, that is shown to be

effective in the case of unequal amplitudes and applicable to

real data signals with a moderate level of noise.

Index Terms— Multicomponent Signal, Time-Frequency

Analysis, Rényi Entropy

1. INTRODUCTION

In the case of multicomponent AM-FM signals, estimating

the number of components is relevant in several respects. It

is known that such a number gives a measure of complex-

ity that can be used for further tasks of detection or classi-

fication. Knowing the number of components is also a pre-

requisite (and, currently, a bottleneck) for powerful methods

such as synchrosqueezing [1, 2] in order to achieve unsuper-

vised mode synthesis.

As proposed in [3, 4], the complexity of a signal (i.e., the

number of components) can be measured with Rényi entropy.

In the case of nonstationary signals, the number of compo-

nents can vary over time, calling for an instantaneous count-

ing. It has been shown in [5] that this information can be ob-

tained by a short-term version of the Rényi entropy applied to

a time-frequency distribution. This appealing new approach

offers the user many possibilities of variations, with perfor-

mance which might depend on factors such as the specific

choice of a distribution, the order of the entropy, or the signal

structure itself.

The aim of this paper is to further investigate the behavior

of the method with respect to the Rényi entropy order and to

the ratio of the components amplitudes, in an idealized con-

text of a positive time-frequency energy distribution (e.g., a

spectrogram). Based on a simplified, theoretical analysis, we

design an algorithm allowing us to obtain an accurate compo-

nent counting.

More precisely, we recall in Section 2 the relation between

the spectrogram, the Rényi entropy, and the number of esti-

mated components. We also propose a simplified model of

spectrogram in order to deduce a closed form approximation

of this number involving the amplitude values and the entropy

order. Based on those results which evidence some limitations

of the direct approach when amplitude are unequal, we pro-

pose in Section 3 an iterative algorithm to estimate accurately

the number of components in such a situation. Section 4 is

dedicated to numerical experiments, whereas conclusions and

perspectives are given in Section 5.

2. A SIMPLIFIED MODEL

2.1. Rényi entropy and number of components

We consider a multicomponent nonstationary signal which

has locally K(t) components at a given time instant t. A

simplified model for a slice of width ∆t of the spectrogram

(or “any” other positive time-frequency energy distribution)

of such a signal reads:

S(θ, f) = 1∆t(θ − t)

K(t)∑

k=1

Ak(t)1∆f (f − fk(t)) (1)

for t − ∆t/2 ≤ θ ≤ t + ∆t/2, with ∆f the equivalent fre-

quency resolution of the analysis. Each component is sup-

posed to be located at a frequency fk(t) with an amplitude

Ak(t) > 0. In order to ensure that the different components

do not overlap in the time-frequency plane, we assume further

that mink,k′{|fk(t)− fk′(t)|} > ∆f .

It follows from the above model (1) that

E(t) :=

∫ t+∆t
2

t−∆t
2

∫ +∞

−∞

S(θ, f) dθ df = ∆t∆f

K(t)∑

k=1

Ak(t) (2)

and, if we introduce the normalized quantity S̃(θ, f) :=
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S(θ, f)/E(t), we have

∫ t+∆t
2

t−∆t
2

∫ +∞

−∞

S̃α(θ, f) dθ df =
(∆t∆f)1−α

∑K(t)
k=1 Aα

k (t)(∑K(t)
k=1 Ak(t)

)α .

(3)

Therefore, the instantaneous Rényi entropy, which is de-

fined in [5] as a short-term version of the global entropy dis-

cussed in [4], can be expressed as:

Hα(t) :=
1

1− α
log2

∫ t+∆t
2

t−∆t
2

∫ +∞

−∞

S̃α(θ, f) dθ df, (4)

with α ∈ R
∗

+\{1}. According to (3), this yields to

Hα(t) = log2(∆t∆f)+
1

1− α
log2

∑K(t)
k=1 Aα

k (t)(∑K(t)
k=1 Ak(t)

)α . (5)

The first term in the r.h.s. of (5) can be seen as the refer-

ence entropy of a single component. The number of compo-

nents estimated with the Rényi entropy follows as [4, 5]

Nα(t) = 2Hα(t)−log2(∆t∆f), (6)

i.e.,

Nα(t) =

( ∑K(t)
k=1 Aα

k (t)(∑K(t)
k=1 Ak(t)

)α

) 1
1−α

(7)

or, equivalently,

Nα(t) = K(t)

(
Mα(A(t))

M1(A(t))

) α
1−α

(8)

where, according to [6], Mα(A(t)) =
(

1
K(t)

∑K(t)
k=1 Ak(t)

α
) 1

α

denotes the power means of order α, for a given family

A(t) = (A1(t), . . . , AK(t)(t)) of K(t) non-zero values.

2.2. Interpretation and examples

In order to evaluate the performance of this estimator, we

analyse the values taken by Nα(t) according to K(t), Ak(t),
and α.

2.2.1. When do we have Nα(t) = K(t)?

It is known [6] that, for any pair of orders r and s such that

r > s > 0, one has Mr(A(t)) ≥ Ms(A(t)), with equality

if and only if A1(t) = . . . = AK(t)(t). As a consequence, if

α > 1, it follows that Mα/M1 ≥ 1 and, since α/(1−α) < 0,

that Nα(t) ≤ K(t). If we rather assume that α < 1, one

has Mα/M1 ≤ 1 but, since α/(1 − α) > 0, one ends up as

previously with Nα ≤ K(t). In summary, assuming conti-

nuity for α = 1 (value for which the Rényi entropy reduces

to the classical Shannon form [4]), one has uniformly for any

α > 0,

Nα(t) ≤ K(t), (9)

with equality if and only if A1(t) = A2(t) = . . . = AK(t)(t),
i.e., if all components are of equal spectral amplitude.

On the other hand, depending on the value of α, we have

the following relations





∑K(t)
k=1 Aα

k (t) <
(∑K(t)

k=1 Ak(t)
)α

if α > 1,
∑K(t)

k=1 Aα
k (t) >

(∑K(t)
k=1 Ak(t)

)α
if α < 1.

(10)

Also, 1/(1 − α) is negative if α > 1 and positive if α < 1.

Hence, according to (7), and to the continuity for α = 1, it

results that, for every α > 0,

Nα(t) ≥ 1. (11)

Considering more specifically the case α = 0, one can remark

[6] that

lim
α→0

Mα(A(t)) =




K(t)∏

k=1

Ak(t)




1
K(t)

(12)

which corresponds to the geometric means of the K(t) com-

ponents. If Ak(t) > 0 for every k ∈ {1, . . . ,K(t)}, the

geometric means happens to be strictly positive and it follows

from (8) that

lim
α→0

Nα(t) = K(t) (13)

for any distribution of the amplitudes A(t). We will show in

Section 4 that this theoretical result is however useless to deal

with real data.

2.2.2. The 2-component case

In the 2-component case (K(t) = 2), one gets

Nα(t) =

(
(1 + ρα(t))

1
α

1 + ρ(t)

) α
1−α

(14)

where ρ(t) := A1(t)/A2(t). One can check that, if ρ(t) = 1,

one gets N(t) = 2 for any α. Besides, for a given order

α, one has limρ(t)→∞ Nα(t) = 1 and limρ(t)→0 Nα(t) = 1,

whereas, for a given amplitude ratio ρ(t), limα→0 Nα(t) = 2.

2.2.3. Confusing 2 or 3-component cases

In the 3-component case (K(t) = 3), one gets

Nα(t) =

(
(1 + ρ−α

12 (t) + ρ−α
13 (t))

1
α

1 + ρ−1
12 (t) + ρ−1

13 (t)

) α
1−α

(15)

where ρ12(t) := A1(t)/A2(t) and ρ13(t) := A1(t)/A3(t).
Eq. (15) permits to get an idea of the range of values of

the amplitude ratios for which the estimed Nα(t) can be mis-

leading in a 3-component situation. Indeed, assuming first for
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simplicity that ρ12(t) = ρ13(t) =: ρ(t), we get from (15) that

N 1
2
(t) ≤ 2 ⇔ ρ(t) ≥ 16 and N2(t) ≤ 2 ⇔ ρ(t) ≥ 4. More

generally, two examples of the generic behaviour of Nα(t) as

a function of ρ12(t) and ρ13(t) are reported in Fig. 1, for the

respective orders α = 1
2 and α = 2.

It clearly appears that the estimated number of compo-

nents Nα(t) is different from K(t) = 3 as soon as the ratio of

the amplitude takes away from 1. Whenever ρ12(t) 6= ρ13(t),
the condition Nα(t) = 2 defines three curves (reported as

full blue lines in Fig. 1) that delineate regions where ampli-

tude ratios may jointly lead to a misleading estimation of the

number of components, ending up with a value Nα(t) < 2
that, while stemming from a 3-component situation, might be

compatible with a 2-component one.
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Fig. 1. Estimated number of components Nα(t) in the case

K(t) = 3, as a function of the amplitude ratios ρ12(t) and

ρ13(t), for a Rényi entropy of order α = 1
2 (left) and α = 2

(right). The isocontours Nα(t) = 2 are superimposed as full

blue lines. The two specific cases that will be considered in

Section 4 are reported as blue dots.

3. AN IMPROVED ALGORITHM

In the case of components with different amplitudes, the

above analysis calls for a refining of the basic approach de-

fined in [5]. Based on the results that 1 ≤ Nα(t) ≤ K(t), we

employ an iterative procedure in order to filter the dominant

spectral component
(
i.e., maxk Ak(t)

)
and thus to emphasize

contributions from the weaker spectral components. Conse-

quently, an index “i” is added to Nα(t) in order to denote

the estimated number of components at each iteration of the

algorithm, i.e., when a significative contribution is removed

from the spectrogram.

The flowchart of the algorithm is given in Fig. 2. As in [5],

the first term in the r.h.s. of (5) is estimated on a reference

signal xref taken for simplicity as a pure tone. We denote

Sx(θ, f)
(
resp. Sxref

(θ, f)
)

the spectrogram associated to

the signal x (resp. xref ). For real data, Sx(θ, f) is thresh-

olded in order to remove part of the noise. The threshold

value is a trade-off between the sensitivity of the algorithm

to low energy components and false detection. The resulting

by removing the highest
amplitude component

Noise thresholding

Yes

Compute spectrograms

No

Yes

No

Done for every t ?

Yes

No

N
[i]
α (t) ≥ 1

Increase Ncount(t) by 1

Generate S
[i+1]
x (θ, f)

Compute N
[i]
α (t) according to (16)

t = t+ 1

i = i+ 1

i = 1

Sxref (θ, f)

xref(t)

x(t)

Sx(θ, f)

Sxref (θ, f)

For every t

K̂(t) = Ncount(t)
max

t
N

[i]
α (t) ≥ 1

t = 1

(∀t)Ncount(t) = 0

S
[i]
x (θ, f)

from S
[i]
x (θ, f)

Fig. 2. Flowchart of the proposed algorithm.

spectrogram is denoted S
[i]

x (θ, f).1 At the i-th iteration, the

estimated number of components is given by

N [i]
α (t) = 2H

[i]
α,x(t)−H[i]

α,xref
(t)

(16)

where

H [i]
α,x(t) :=

1

1− α
log2

∫ t+∆t
2

t−∆t
2

∫ +∞

−∞

(
S
[i]

x (θ, f)

E
[i]
x

)α

dθ df

(17)

and E[i]
x (t) :=

∫ t+∆t
2

t−∆t
2

∫ +∞

−∞

S
[i]

x (θ, f) dθ df . Note that, in

the algorithm, the removal from S
[i]

x (θ, f) of the highest am-

plitude component is achieved within a cell of size ∆t∆f .

Figure 3 presents the first four iterations of the proposed

algorithm on a 3-component signal. We fix α = 2 and, at

each iteration i of the algorithm, N
[i]
2 (t) is computed. While

N
[i]
2 (t) ≥ 1, the value Ncount(t) is increased by 1 and the

1The upper index ·[i] refers to the i-th iteration. S
[i]
x (θ, f) denotes the

spectrogram to be analyzed at the i-th iteration.
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highest amplitude component is removed, by setting to zero

S
[i]

x (θ, f) around fk(t) = argmaxf S
[i]

x (θ, f), in order to

generate S
[i+1]

x (θ, f) from S
[i]

x (θ, f). We denote K̂(t) the

final value of Ncount(t). This value denotes the estimate of

K(t) obtained with the proposed algortihm.

4. NUMERICAL EXPERIMENTS

Figure 4 compares the performance of the state-of-the-art

method [5] with the proposed algorithm according to differ-

ent signals: three simulated data and one real signal.

4.1. Theory versus numerical experiments

In this section, the spectrograms are computed with a Kaiser

window of length 37 and ∆t = 11.

The first experiment is designed in order to be close from

the simplified model proposed in Section 2. Three compo-

nents with different temporal lengths and with spectrogram

amplitude ratios ρ12 = 5 and ρ13 = 2 are combined. As

described in Figure 1, this situation is associated to the “non-

confusing” one. As observed in the first column of Figure 4,

the computation of Nα(t) with α = 1/2 or α = 2 leads to a

good estimation of the number of component.

A similar experiment is presented in the second column

with ρ12 = 20 and ρ13 = 15 (confusing 2-3-component situ-

ation, cf. Figure 1). This time, we clearly see the difficulty to

observe a three component signal with the standard approach,

while the proposed iterative algorithm succeeds in this task.

Before dealing with real data, we have run additive exper-

iments in order to analyze AM-FM components. The results

are presented in the third column of Fig. 4 and the good be-

havior of the proposed method, compared to the state-of-the

art, is quite clear.

We can further observe that, when no threshold is applied

on Sx(θ, f), using a too small α (here, α = 0.01) leads to

a bias in the computation of Nα(t). We therefore do not ob-

tain the expected result limα→0 Nα(t) = K(t) (cf. 2nd row

and 1st, 2nd, and 3rd column in Figure 4), justifying from a

different perspective the need of an improved algorithm.

4.2. Real data

The performance of the algorithm on real data is shown in

the last column of Fig. 4. We deal in this case with a bat

echolocation signal2. The spectrograms are computed with a

Kaiser window of length 61 and ∆t = 3. The results present

some fluctuations, yet they stay in reasonable agreement with

what can be expected from the spectrogram.

2The authors wish to thank Curtis Condon, Ken White, and Al Feng of

the Beckman Institute of the University of Illinois for the bat data and for

permission to use it in this paper.

5. CONCLUSION AND PERSPECTIVES

A methodology has been proposed and discussed for estimat-

ing the instantaneous number of components in a nonstation-

ary multicomponent signal. This question is important be-

cause it is a necessary pre-processing step in advanced data-

driven decomposition techniques such a synchrosqueezing [1]

or Empirical Mode Decomposition [7].

Whereas it has been shown that a refined algorithm is ef-

fective for coping with situations that had not previously con-

sidered in [5] (unequal amplitudes), some questions still re-

main open. For instance, the role of the entropy index is bet-

ter understood, but its choice could be made more objective,

with the possibility of using this degree of freedom by means

of a comparison between different estimations with different

indices. Another point that has not been mentioned here is

the influence of noise. Preliminary experiments tend to prove

that the method is robust to moderate levels of additive noise,

but this clearly needs to be further refined.

6. REFERENCES

[1] I. Daubechies, J. Lu, and H.-T. Wu. Synchrosqueezed

wavelet transforms: An empirical mode decomposition-

like tool. Appl. Comp. Harm. Analysis, 30(2):243–261,

Mar. 2011.

[2] S. Meignen, T. Oberlin, and S. McLaughlin. On the mode

synthesis in the synchrosqueezing method. In Proc. Euro-

pean Signal Processing Conference, pages 1865 – 1869,

Bucharest, Romania, Aug. 27-31 2012.

[3] W.J. Williams, M.L. Brown, and A.O. Hero. Uncertainty,

information, and time-frequency distributions. Proc. Int.

Soc. Opt. Eng., 1566:144–156, 1991.

[4] R.G. Baraniuk, P. Flandrin, A.J.E.M Janssen, and

O. Michel. Measuring time-frequency information con-
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Fig. 3. Iterations of the proposed algorithm. Each column is associated to one iteration of the algorithm. The first row presents

the spectrograms whose higher amplitude component is removed at each step. The second row shows the value Nα at the i-th
iteration, based on the spectrogram. The third row is dedicated to the value Ncount(t). For the last iteration Ncount(t) = K̂(t).
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Fig. 4. Results obtained for different signals with the approach proposed in [5] with α = 0.01 (2nd row), α = 1/2 (3rd row),

and α = 2 (4th row) and with the proposed algorithm (5th row).
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