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ABSTRACT

The last few years have shown a growing interest in dis-

tributed noise reduction for speech enhancement in wireless

acoustic sensor networks. With this new generation of speech

processing algorithms, part of the processing is done at pro-

cessors not necessarily owned by the user. As a consequence,

privacy of the users might be at risk. One risk that underlies

such distributed speech enhancement systems is the risk of

eavesdropping by untrusted parties. To address these pri-

vacy issues, we present how a distributed beamformer can

be turned into a privacy preserving distributed beamformer

using so-called homomorphic encryption techniques and

semi-trusted third parties.

Index Terms— Distributed speech enhancement, encryp-

tion, privacy.

1. INTRODUCTION

The use of speech processing applications like mobile phones,

hearing aids and voice controlled devices is fully integrated in

our daily life. As a result, people expect these applications to

work anywhere and at anytime. However, many daily life en-

vironments are rather noisy in character, degrading the speech

quality and resulting in a reduced speech intelligibility. To

widen the range where these speech processors can success-

fully be used, they are often equipped with a noise reduc-

tion algorithm, see [1–3] for an overview. A powerful means

to increase both quality and intelligibility of noisy speech is

to employ the spatial diversity and use a multi-microphone

noise reduction algorithm. The performance of these multi-

microphone noise reduction algorithms is to a large extent de-

termined by the number of microphones and the array topol-

ogy. However, due to physical constraints (e.g., size or battery

power) mobile devices are heavily constrained with respect to

the number and positions of the microphones, which limits

the performance of multi-microphone noise reduction.

The recent advances in the area of wireless acoustic sen-

sor networks (WASNs) allow to use a much larger number

of microphones at positions that are not constrained by the

device itself. However, conventional multi-microphone noise

reduction algorithms are characterized by a centralized setup

(see e.g. [2, 3]). This requires to transmit all data to a single

node for processing. To fully employ the power of WASNs,

there has recently been an increased interest to develop dis-

tributed noise reduction algorithms, see for example [4–6].

An important difference between conventional centralized

and distributed speech enhancement is the fact in the former

situation all processing is done on one device, owned by one

user, while in the latter situation, the processing is performed

by multiple processors potentially owned by different users.

This can lead to severe privacy issues and allows potentially

untrusted people to eavesdrop conversations.

Distributed processing in WASNs is expected to play

an important role in future speech communication systems.

However, even though privacy and security are important

values in our society, they are potentially at risk with the

new generation of distributed speech processing algorithms.

An important condition for the success and acceptance of

WASNs for speech communication is the development of

algorithms that can guarantee the privacy of the users. How-

ever, until recently, privacy and security considerations for

(distributed) speech processing received hardly any attention.

An interesting development in the context of signal pro-

cessing and privacy preservation is the development of secure

signal processing (SSP) [7], which has recently also been in-

troduced to the area of speech processing [8]. With SSP, data

is encrypted using a homomorphic encryption scheme [9].

The decryption key is only available to the person who gen-

erates the keys. This means that the data is inaccessible by

other parties. However, the homomorphic property of the en-

cryption technique allows to perform linear operations on the

encrypted data like scaling and addition without necessarily

knowing the content of the ciphertext. With the help of the

homomorphism property, it is possible to realize privacy pre-

serving noise reduction in a distributed fashion.

In [10] we introduced the problem of distributed noise re-

duction for speech enhancement and privacy considerations.

We demonstrated how a simplified version of the distributed

beamformer from [6] can be turned into a privacy preserv-

ing algorithm using homomorphic encryption. The scenario

in [10] concerned the case where a user does not want to share

to which source he intents to listen, but still wants to use other
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entities to estimate this source signal in a distributed manner.

In the current paper we target a different scenario for

privacy preservation. An important risk that underlies dis-

tributed speech enhancement algorithms is the risk of eaves-

dropping. This becomes more prominent than in the con-

ventional centralized way of processing, as (intermediate)

estimates of the target signal might be available at other

entities in the network. This facilitates eavesdropping by

untrusted parties. We consider the situation that the process-

ing entities in the WASN are semi-trusted third parties. This

means that they fully collaborate with the user in order to

perform SSP, however, they will not be provided with the

decryption key and will only provide data to other entities in

encrypted format. This makes eavesdropping by untrusted

parties impossible, as computations done in the encrypted

domain and only encrypted data is exchanged.

2. PROBLEM FORMULATION AND NOTATION

As an example of distributed beamforming, we consider the

situation where a target source degraded by noise is estimated

using the beamformer from [6]. This beamformer estimates

the target signal on a frame-by-frame basis in the Fourier do-

main. Assuming an additive noise model, we can write

Yi(k,m) = Si(k,m) +Ni(k,m), (1)

where Yi(k,m), Si(k,m) and Ni(k,m) are the noisy speech,

clean speech and noise discrete Fourier transform (DFT) co-

efficient for microphone i, frequency bin k and time frame m.

Further we assume that all sources are mutually uncorrelated.

The target and noise DFT coefficients are assumed to

be independent across time and frequency, which allows

to omit the time and frequency indices for notational con-

venience. Further, we use a stacked vector notation, i.e.,

Y = [Y1, · · · , YM ]T , with M the number of microphones

and where (·)T denotes transposition of a vector or a matrix.

The speech and noise vector S and N are defined similarly as

Y. Let d = [d1, · · · , dM ]
T

be the acoustic transfer function

from the speech source to all sensor nodes. In order to con-

centrate on the privacy preserving context, we assume that d

is known by the user or can be computed given the knowledge

of the sensor positions and the position of interest. Although

the exact value of di also depends on the room acoustics, this

will be neglected in this paper for simplicity and we assume

a free field situation. In that case, di is completely specified

by the location of the target source and the microphones. For

an overview on sensor network self localization and source

localization algorithms see [11, Ch. 13] and [3, Ch. 8], re-

spectively. Altogether we can write

Y = S+N = Sd+N, (2)

with S the target DFT coefficient at the target location.

The clean speech estimate Ŝ is obtained by taking a lin-

ear combination of the elements in Y, that is, Ŝ = w
∗
Y,

where (·)∗ indicates Hermitian transposition and w denotes

the spatial filter coefficients.

2.1. Centralized Beamformer

The filter coefficients for the minimum variance distortionless

response (MVDR) beamformer are obtained by minimizing

the output power of Ŝ, subject to the constraint of no speech

distortion, that is,

min
w

w
∗
RYYw, subject to w

∗
d = 1, (3)

with RYY = E[YY
∗]. Assuming that the noise DFT coeffi-

cients Ni ∀ i are zero-mean with power spectral density (PSD)

σ2
Ni

, spatially uncorrelated, and uncorrelated with the speech

DFT coefficients S, we can write the estimate Ŝ under the

constraint optimization problem expressed by Eq. (3) as [6]

Ŝ =
1
M

∑M

i=1 d
∗
i σ

−2
Ni

Yi

1
M

∑M

i=1 |di|
2σ−2

Ni

. (4)

2.2. Randomized Gossip Based Distributed Beamformer

The randomized gossip (RG) algorithm [12] can be used to

compute averages in a distributed way. Although the RG

algorithm is iterative and convergence depends on the num-

ber of sensors, it has the advantage that it puts no constraints

on the underlying network topology (apart from being con-

nected). Notice that in the case that the network topology is

known and the order of communication can be coordinated, a

non-randomized Gossip strategy could be used as well. How-

ever, in this paper we only consider the RG strategy. In [6]

it was proposed to use RG in order compute the estimator in

Eq. (4) in a distributed fashion. The estimator in Eq. (4) is

therefore on purpose written as a ratio of two averages. With

the RG algorithm these two averages are estimated iteratively

after which the estimate Ŝ is obtained by computing the ratio

between these averages.

To do so, each node needs the initial values Ỹi(0) =

d∗i σ
−2
Ni

Yi and d̃i(0) = |di|
2σ−2

Ni
. Given these initial val-

ues, the RG algorithm can be employed to compute the two

averages in the numerator and denominator of Eq. (4). To

compute these initial values, each node is in need of di, Yi

and σ2
Ni

. The DFT coefficient Yi is computed at node i and

the noise PSD σ2
Ni

can be estimated at each node i using a

noise PSD estimation algorithm, e.g., [13]. Given the ini-

tial values Ỹi(0) and d̃i(0), in each iteration two randomly

selected neighboring nodes in the network exchange their

information and compute

Ỹi(t) = Ỹj(t) =
(
Ỹi(t− 1) + Ỹj(t− 1)

)
/2, (5)

d̃i(t) = d̃j(t) =
(
d̃i(t− 1) + d̃j(t− 1)

)
/2. (6)

After a specified number of iterations, Ŝ can then be com-

puted as Ŝ = Ỹi(t)/d̃i(t).
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3. HOMOMORPHIC ENCRYPTION

One approach to protect private data against malicious entities

is to keep it secret by means of encryption. However, if the

data is to be used for further processing, traditional encryption

schemes require the data to be decrypted first. Clearly, this

approach does not provide an effective protection mechanism,

particularly against the party who processes the secret data.

Fortunately, a number of cryptosystems preserves some

structure after encryption that can be exploited. These cryp-

tosystems, known as homomorphic cryptosystems, allow to

perform simple mathematical computations like addition and

multiplication on encrypted data. In this work we consider

the homomorphic Paillier encryption system [14]. The Pail-

lier encryption scheme is from a family of so-called asymmet-

ric encryption that uses two different keys: a public key (PK)

that can be used for encryption and known by everyone, and

a secret key (SK) that can be used for decryption and known

by the owner only.

To illustrate how homomorphism can be used for provid-

ing a protection mechanism, we first introduce the Paillier en-

cryption scheme in detail. Let Epk and Dsk denote the encryp-

tion and decryption operations with the public and the secret

key, respectively.

The Paillier cryptosystem is additive, meaning that multi-

plication of two Pailler encrypted numbers yields the encryp-

tion of the sum of the numbers, that is,

Dsk(Epk(m1) · Epk(m2)) = m1 +m2. (7)

As a consequence of the additive homomorphism, a number

can also be scaled by exponentiating its encryption by a con-

stant, that is,

Dsk(Epk(m)c) = m · c. (8)

The Paillier encryption function for encrypting the mes-

sage m ∈ Zn is given by,

c = Epk(m) = gm · rn mod n2, (9)

where n = p · q is a product of two large prime numbers p
and q, g is a generator of the group with order n (i.e., gn =
1 mod n2) and can always be chosen as g = n + 1, and r is

randomly chosen from a specific set of numbers that are co-

prime1 with n. The private key is the tuple (p, q), from which

the public key follows as the tuple (n, g). The decryption

function for encryption c is defined as

Dsk(c) =
L(cλ mod n2)

L(gλ mod n2)
mod n, (10)

where L(u) = (u − 1)/n and λ = lcm(p − 1, q − 1), with

lcm(a, b) the least common multiple of two integers a and b,
i.e., the smallest positive integer that is divisible by both a and

b. Notice that as we work with modular arithmetic, a−1 is the

modular inverse, defined as, a · a−1 = 1 mod n.

1Two numbers are co-prime if there is no positive divisor that can divide

both, except the number one.
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Fig. 1. (a) Number of co-primes as a function of the size of n
in bits. (b) Distribution pEpk(5) of the encryption Epk(5).

As an example, we consider the encryption of the num-

ber m = 5. In this example, the secret key is chosen as

(p, q) = (3, 5) leading to a public key (n, g) = (15, 16).
The numbers p and q in this example are relatively small for

demonstration purpose. In practice they are of a much higher

order for security purposes. Even with this small number

n = 15, there are already eight numbers r that are co-prime

with n, e.g., r = 7 or r = 8. Encryption of the number 5 can

then lead to eight different possible outcomes, e.g.,

Epk(5) = 165715 mod 152 = 193

or

Epk(5) = 165815 mod 152 = 32.

To decrypt the encryption 193, we need to compute λ, which

is in this example given by lcm(2, 4) = 4. Then,

Dsk(193) =
L(1934 mod 152)

L(164 mod 152)
mod 15 =

5

4
mod 15 = 5,

with 1
4 the modular inverse of 4, that is, 1

4 = 4 mod 15.

In practice, the number n is very large (more than 1024

bits), to make the system secure as these cryptosytems rely

on one of the mathematical hard problems like nth residues

and factorization that requires using very large numbers. As

the numbers are very large, it is practically infeasible to deter-

mine the plain data m without access to the secret key. This

is due to the difficulty for the adversaries with bounded com-

putational resources to solve the nth residue problem that will

help them to recover the secret key. Another key point is that

the adversaries cannot distinguish the encryptions due to the

probabilistic nature of the encryption function. Notice that

even if the same message is encrypted, the resulting cipher-

text will be different due to the random number introduced in

the encryption function. This can be explained in the follow-

ing way: with increasing n, the amount of numbers that are

3
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co-prime with n increases exponentially, as shown in Fig. 1(a)

as a function of the size of n in bits. This makes it, for suffi-

ciently large n, infeasible to guess or learn the encrypted num-

ber m from the encryptions Epk(m). Moreover, as r is cho-

sen uniformly from the set of numbers that are co-prime with

n and all calculations are modulo n2, the outcomes Epk(m)
tend to be uniformly distributed. This is shown in Fig. 1(b),

where the histogram pEpk(5) is shown based on repeatedly en-

cryption (104 times) of the number m = 5. The fact that

the encryptions Epk(5) are uniformly distributed implies no

information is leaked about the encrypted number m = 5.

An important aspect of this encryption scheme is the fact

that it operates in a modular domain and that the message m
needs to be representable in this domain. This means that m
should be an integer in the range m ∈ [0, n − 1]. Negative

numbers can be represented using a constant shift, or, recod-

ing the negative number, say −m, using its modular inverse.

4. PRIVACY-PRESERVING DISTRIBUTED SPEECH

ENHANCEMENT

To overcome eavesdropping by untrusted third parties, we ap-

ply SSP based on homomorphic encryption [9]. We consider

a scenario where the processing entities in the network are

considered to be semi-trusted. This means that these enti-

ties will not be provided with the decryption key, but, they

are trusted in the sense that they will collaborate with the

user and perform all computations with microphone data in

the encrypted domain using a public key and only exchange

encrypted processed microphone signals. As a consequence,

eavesdroppers will have no access to the microphone signals

and will not be able to combine them into a beamformer,

eventhough the acoustic transfer function might be available.

Moreover, none of the network entities can listen to the esti-

mated signal, apart from the owner of the decryption key.

4.1. Privacy Preserving Algorithm

The core of the RG based distributed beamformer depends

on the iterative operations expressed by Eqs. (5) and (6) in

order to compute the two averages that form Eq. (4), i.e.,

Yavg = 1
M

∑M

i=1 d
∗
i σ

−2
Ni

Yi and davg = 1
M

∑M

i=1 |di|
2σ−2

Ni
, in

distributed fashion. Such distributed computations imply that

estimates of Ŝ are available in the WASN and can easily be

accessed by other untrusted entities. To provide the required

security, we assume the network consists of entities that are

semi-trusted. This means that these entities collaborate with

the user and process data according to certain rules. In or-

der to prevent eavesdropping of conversations, the estimate

Yavg = 1
M

∑M

i=1 d
∗
i σ

−2
Ni

Yi is not computed using standard

distributed processing, but using distributed processing in the

encrypted domain using homomorphic encryption.

First, a user generates a secret key and a public key. To-

gether with their di, all semi-trusted entities are provided with

the public key. As the di’s are unencrypted, davg is computed

using standard RG without any encryption, see Sec. 2.2. The

public key can then be used to encrypt Yi and compute Yavg in

a distributed and secure way using homomorphic encryption.

As Yi is complex and homomorphic encryption works on real

integer valued numbers, all variables must be split into real

and imaginary parts and quantized to integers. We will use

the subscripts ℜ and ℑ to denote the real and imaginary part

of a variable, and let [ · ] denote the scaling and quantization

operation. Encryption of the scaled and quantized quantities

at entity i then leads to Epk([Yiℜ]) and Epk([Yiℑ]).

Next, the encrypted version of the initialization Ỹi(0) =

d∗i σ
−2
Ni

Yi can be computed by each entity. Splitting Ỹi(0) into

its real and imaginary parts we obtain

Ỹi(0)ℜ = d∗i ℜσ
−2
Ni

Yiℜ − d∗i ℑσ
−2
Ni

Yiℑ, (11)

Ỹi(0)ℑ = d∗i ℑσ
−2
Ni

Yiℜ + d∗i ℜσ
−2
Ni

Yiℑ. (12)

Notice that d∗i ℑ indicates to first take the conjugate of di fol-

lowed by taking the imaginary part of that.

Given the encryptions Epk([Yiℜ]) and Epk([Yiℑ]), Eqs.

(11) and (12) can be transformed into

Epk(Ỹi(0)ℜ) = Epk([Yiℜ])

[

σ
−2

Ni
d∗

i ℜ

]

Epk([Yiℑ])
−

[

σ
−2

Ni
d∗

i ℑ

]

,

Epk(Ỹi(0)ℑ) = Epk([Yiℜ])

[

σ
−2

Ni
d∗

i ℑ

]

Epk([Yiℑ])

[

σ
−2

Ni
d∗

i ℜ

]

.

Given these initial values, the iterations expressed by Eq.

(5) can be performed in the encrypted domain. Given two

communicating nodes i and j, these iterations are translated

in the encrypted domain as

Epk(Ỹi(t)ℜ) = Epk(Ỹi(t− 1)
ℜ
)2

−1

Epk(Ỹj(t− 1)
ℜ
)2

−1

,

Epk(Ỹi(t)ℑ) = Epk(Ỹi(t− 1)
ℑ
)2

−1

Epk(Ỹj(t− 1)
ℑ
)2

−1

,

where power 2−1 denotes the modular inverse of 2. As all

numbers in the encrypted domain should remain integers, spe-

cial care needs to be taken when exponentiating encrypted

numbers by a modular inverse as 2−1, as this implies a de-

vision by 2 potentially leading to non-integers. To overcome

this, the scaling and quantization operation [ · ] should be a

multiple of two, related to the number of applied iterations.

Finally, after sufficient iterations, the secret key owner can

compute the estimate Ŝ = (Ỹi(t)ℜ + jỸi(t)ℑ)/d̃i(t) by de-

cryption and construct the time-domain waveform by com-

puting an inverse DFT followed by an overlap-add.

5. CONCLUDING REMARKS

In this paper we addressed the fact that with distributed beam-

forming, privacy might be at risk. To overcome eavesdrop-

ping of conversations, we presented how a distributed beam-

former can be turned into a privacy preserving distributed

beamformer based on homomorphic encryption.
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Homomorphic encryption is an elegant technique that al-

lows to perform basic mathematical operations on encrypted

data. However, existing homomorphic encryption schemes

are based on mathematically difficult problems and thus, re-

quire to use large numbers. This introduces two main draw-

backs: 1) data expansion, and 2) computational complexity

due to the large numbers. The former results in an increased

bit-rate, while the latter is directly related to available compu-

tational power, which is an important consideration in mobile

devices.

To reduce computational complexity, secret sharing can

be used [15]. With secret sharing, data is split among a num-

ber of parties such that construction is only possible when

a subset of these parties combines their shares. While addi-

tions are significantly efficient, multiplications require more

computational resources. Even though the size of the data be-

comes larger (linear in the number of shares), the overall data

expansion can be smaller than using homomorphic encryp-

tion.

A second approach to consider is to use garbled circuits,

which realize any function with private inputs in a secure

manner [16]. The main idea is to represent the function with

a Boolean circuit and evaluate each logic gate securely. In

literature, there are already efficient solutions for garbled

circuits that realize secure computation of non-linear func-

tions [17]. When combined with homomorphic encryption,

this can significantly reduce the computational complexity as

it uses symmetric encryption algorithms, which are signif-

icantly faster than homomorphic cryptosystems. However,

this approach heavily depends on pre-computed values that

are assumed to be computed before the actual protocol be-

gins. Therefore, the right choice of the approach is directly

related to the application setting.
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