
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

GREEDY SPARSE SPECTRAL FACTORIZATION USING REDUCED-SIZE GRAM MATRIX

PARAMETERIZATION
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ABSTRACT

In this paper we deal with retrieving the spectral factor for an

autocorrelation polynomial with only a few nonzero elements.

The algorithm is based on the representation of polynomials

using sparse bases. We search in a greedy way for a basis by

removing elements from the basis of the autocorrelation poly-

nomial and extracting the spectral factor, using a semidefinite

program. The algorithm stops when no other solution can be

obtained with a smaller basis. Our algorithm appears to be

faster and can be more accurate than previous methods.

Index Terms— spectral factorization, autocorrelation,

semidefinite programming, greedy algorithm

1. INTRODUCTION

Spectral factorization [1] aims to recover a signal from its au-

tocorrelation sequence. The problem is also known as phase

retrieval. Its applications vary from X-ray crystallography

[2], imaging in astronomy [3] to filter design [4] and speech

recognition [5]. When dealing with sparse spectral factoriza-

tion one has to extract the spectral factor of an autocorrelation

sequence with only a few nonzero coefficients.

Spectral factorization has been approached in various

ways, e.g. Schur algorithm, Riccati equations, Kalman fil-

tering [1]. The first paper that studied the possibility of

recovering the signal from its sparse autocorrelation and also

giving an iterative algorithm, using singular values projec-

tions, to find the spectral factor, is [6]. Later, in [7], a convex

rank minimization method was proposed which was later up-

dated in [8]. Note that the convex optimization methods from

[7] and [8] start with the lowest possible sparsity and increase

it until a solution is found. A method based on combinatorial

analysis was also proposed in [8], with high probability of

success if s = O(n1/3), where s and n are the number of

This work was supported by the Romanian National Authority for Sci-

entific Research, CNCS-UEFISCDI, project PN-II-ID-PCE-2011-3-0400.

nonzero coefficients of the autocorrelation and its degree,

respectively.

Our algorithm employs a greedy method over the basis of

the autocorrelation polynomial. We start with the basis of the

autocorrelation and extract one element. With the new basis

for the autocorrelation we solve a semidefinite programming

(SDP) problem to find a rank-1 matrix from which we can

extract the spectral factor. If no solution is obtained we in-

sert the element back in the basis and extract the next one.

If we obtain a solution, the support of the spectral factor be-

comes the new basis of the autocorrelation polynomial. The

process of removing elements from the basis stops when we

cannot find a solution with a smaller basis. We present two al-

gorithms, named GreedyR and GreedyM, based on different

rank minimization heuristics. While the objective function

of the GreedyR algorithm uses a random matrix, as typically

prescribed, the one for GreedyM is fixed. This difference is

crucial—GreedyM performs better than GreedyR. We show

that the GreedyM algorithm can find the solution, up to a sign

change and time reversal, in more cases than previous algo-

rithms. Also, our method appears to be faster than other algo-

rithms from the literature.

We present the SDP problem involved in our method in

Section 2. The algorithm is discussed in Section 3, while the

results are presented in Section 4. We conclude in Section 5.

Notations

Multivariate variables (vectors, matrices) are written with

bold letters. We denote with a vector h the coefficients of

the polynomial H(z) and with supp(H(z)) its support. We

denote TrM the trace of the matrix M and with detM its

determinant. M(i, j) is the element on the (i, j) position of

the matrix M . abs(x) is the element-wise absolute value of

the vector x. N and R are the sets of nonnegative integers and

real numbers, respectively. The cardinal of a set I is denoted

by |I|. By I −I we understand the set of all differences i− j
where i, j ∈ I.
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2. SPARSE SPECTRAL FACTORIZATION

Denote

ψn(z) = [ 1 z z2 . . . zn ]T (1)

the canonical base for polynomials of degree n in z. Then,

any polynomial with real coefficients

H(z) = h0 + h1z
−1 + . . .+ hnz

−n (2)

can be written as H(z) = hTψn(z
−1).

Let R(z) be an autocorrelation polynomial. Hence, there

exists a polynomial (2) such that

R(z) = H(z)H(z−1) =

n
∑

k=−n

rkz
−k, (3)

where rk, k = −n : n, are the coefficients of the autocorre-

lation polynomial. The polynomial H(z) is called a spectral

factor of the polynomial R(z). Note that in light of (3) the

powers of z in the polynomial R(z) are given by all the dif-

ferences between the powers of z in the polynomial H(z).
We denote IR the indices of the causal part of the support of

R(z), i.e. those with nonnegative values.

Considering (3), there exists a symmetric positive definite

matrix Q ∈ R
(n+1)×(n+1) such that [9]

R(z) = ψT
n (z

−1) ·Q · ψn(z), (4)

i.e. the unique coefficients of the symmetric polynomialR(z)
are rk = Tr[ΘkQ], k = 0 : n, where Θk is an elementary

Toeplitz matrix with ones on the k-th diagonal and zeros else-

where. The matrix Q is called Gram matrix [10].

The SDP problem [11, Section 2.6.1]

max
Q

Q(1, 1)

s.t. Q � 0

rk = Tr[ΘkQ], k = 0 : n

(5)

can be used to extract the minimum-phase spectral factor. The

solution of problem (5), Q⋆, has rank 1 and the minimum-

phase spectral factor is

h =
1

√

Q⋆(1, 1)
Q⋆(:, 1). (6)

In the case where the autocorrelation polynomial R(z) is

sparse, it is natural to appeal to sparse bases. For a set of

indices I ⊆ {k ∈ N | 0 ≤ k ≤ n}, we define the sparse basis

vector

ψI(z) = [. . . zk . . .]T , with k ∈ I. (7)

The basis from (7) is a subset of the basis from (1).

Consider a sparse autocorrelation polynomial R(z) with

the support I − I. Similarly to (4), it can be written

R(z) = ψI(z
−1) ·QI · ψI(z), (8)

where QI ∈ R
|I|×|I| is a positive semidefinite matrix. Note

that the supports of a sparse autocorrelation polynomialR(z)
and its spectral factorH(z) always contain the coefficients of

the powers 0 and n of z.

We aim now to find a sparse spectral factor H(z) with

support indices I for the autocorrelation polynomial R(z).
We propose solving a similar problem to (5), where the auto-

correlation polynomial is defined as in (8). Sparse autocorre-

lation polynomials don’t necessarily have a sparse minimum-

phase spectral factor. The criterion of (5) could be replaced

by a typical rank minimization heuristic. For example, one

could use in search for the sparse spectral factor the problem

max
Q

Tr[AQ]

s.t. Q � 0

rk = Tr[Θk(I) ·Q], k ∈ I − I ∩ {0 : n}
(9)

where Θk(I) = C · Θk · CT and C is a selection matrix

having on the k-th row a single value of 1 on the position

denoted by the k-th element of I and A is a random matrix

with normally distributed elements. The SDP problem (9) is

much less complex than (5) since the size of the matrix Q is

|I| × |I| instead of (n+1)× (n+1) and thus the number of

operations needed to solve it isO(|I|4)≪ O(n4). Moreover,

the complexity of (9) depends only on the sparsity level, not

on the degree of the autocorrelation polynomial.

The objective function used in the problem (9) is an

heuristic used for rank minimization, see e.g. [7]. Unlike

problem (5), when solving the problem (9) there is no guar-

antee that the obtained solution matrix has rank 1. If a rank-1

solution is obtained then the spectral factor is retrieved as in

(6). If the obtained solution is not a rank-1 matrix, then we

cannot retrieve the spectral factor.

Although in principle all matrices A should give similar

performance, we have found out that better results are given

by the problem

min
Q

Q(1, 1)

s.t. Q � 0

rk = Tr[Θk(I) ·Q], k ∈ I − I ∩ {0 : n}
(10)

As we will show, the improvement in the success rate for the

problem (10) over the problem (9) can be up to 15%. Note

that the criterion of (10) is the opposite of the criterion for

finding the minimum-phase spectral factor. However, this is

not the criterion that would give the maximum-phase spec-

tral factor (which would mean maximizing Q(n+1, n+1)).
The minimum or maximum-phase criteria are both worse than

(10) for sparse spectral factorization.

3. THE ALGORITHM

Recall the problem: given an autocorrelation polynomial

R(z), we seek to compute the sparsest H(z) such that (3)
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holds. We denote I the set that in the end will contain the

support of the solution H(z) of the algorithm. We start with

I = IR (the causal part of the support of R(z)) as the initial

candidate set for the support of H(z). Note that IR is also

sparse, even though it may contain much more indices than

the support ofH(z). We define the complement of an element

i in the set I as the difference between the maximum of I
and the element referred to, i.e. n− i. Since for a power i of z

in H(z), R(z) contains both the power i and its complement,

we remove all the elements from I whose complements do

not exist in the set I. Then, we solve the problem (10). If we

obtain a rank-1 solution, we retrieve the spectral factor H(z)
via (6) and set all coefficients smaller in absolute value than

a threshold εh to zero. We define this factor as the current

solution and set I as its support.

Next, we try to eliminate indices from I one by one and

we start with an index i. If IR ⊆ I − I, i.e. the current sup-

port can generate the support of the autocorrelation, we solve

problem (10). If a rank-1 solution is obtained, the spectral

factor is extracted from it; all coefficients smaller than εh in

absolute value are set to zero. We set I the support of the new

H(z) and we continue eliminating indices from I. If we do

not have a rank-1 solution or I can not generate IR we insert

the index i back to I and we eliminate the next index. The al-

gorithm stops when no rank-1 solution can be obtained with

a smaller support. Note that we solve problem (10), before

eliminating any index, due to the fact that the support of the

autocorrelation can also be the exact support of the spectral

factor.

We name GreedyM this algorithm, which is listed below.

An autocorrelation polynomial R(z) stands as input variable

for the algorithm. The algorithm returns a polynomial H(z)
which is a sparse spectral factor, possibly the sparsest. We

name algorithm GreedyM for which we replace the problem

(10) with problem (9) as Algorithm GreedyR.

The case s = 2 (the support contains only the endpoints)

is treated separately, in analytic fashion. Considering the

equality constraints from (10) the Gram matrix Q has the

form

Q⋆ =

[

q rn
rn r0 − q

]

(11)

where q ∈ [
r0−
√

r2
0
−4r2

n

2 ,
r0+
√

r2
0
−4r2

n

2 ]. The matrix Q⋆ has

rank 1 if and only if

detQ⋆ = 0, (12)

which is equivalent to

q2 − qr0 + r21 = 0. (13)

Using the minimum solution of the equation (13) to determine

the matrix Q⋆, we retrieve the spectral factor with (6).

Algorithm GreedyM Search for sparse spectral factor

Input: the autocorrelationR(z)
Output: the spectral factor H(z)

I ← IR , the indices of the causal part of R(z)
remove the indices that do not have the complement in I
if the problem (10) has a rank-1 solution then

extract the spectral factor using (6)

set coefficients of abs(h) < εh to 0

the candidate sparse spectral factor is H(z)
I ← supp(H(z))

while we find rank-1 solutions do

n′ ← |I|
for i = 2→ n′ − 1 do

remove β, the i-th element from I
if IR ⊆ I − I then

if the problem (10) has a rank-1 solution then

extract the spectral factor using (6)

set coefficients of abs(h) < εh to 0

the candidate sparse spectral factor is H(z)
I ← supp(H(z))
break

add β back to I

4. RESULTS

We start our tests on the autocorrelation polynomial depicted

by Figure 1a, which is similar to the one used in [6, Example

2]. Using algorithm GreedyM we have found that the spectral

factor is a six coefficient polynomial, as shown in Figure 1b,

which has the same support as the spectral factor found in [6].

The GreedyM algorithm starts with the support of the au-

tocorrelation

I = [ 0 2 3 9 11 19 22 30 33 39 41 42 44 52 61 63 ]

from which we remove the elements that do not have the com-

plement in I, namely 3, 9, 39, 42. Solving the algorithm with

the current support we do not obtain a rank-1 solution. Next,

we eliminate element 2 from I and solve the problem (10).

We obtain a rank-1 solution and the support of the current

spectral factor has 6 elements. Note that the support size can-

not decrease because a smaller support for the spectral factor

cannot generate the support of the autocorrelation. Hence, the

last solution is the final one.

The total running time of the GreedyM algorithm is 5 sec-

onds using a Pentium 4 with a 2 GHz processor, while the run-

ning time of the algorithm from [6] on a 2.2 GHz computer

is 16 seconds. Hence, our algorithm appears to be faster. An

extensive comparison with [6] is not possible due to the lack

of more examples in [6].

Next, we test our algorithms on sparse polynomialsH(z)
with coefficients chosen to be normally distributed numbers.
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(a) The autocorrelation.
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(b) The sparse spectral factor.

Fig. 1: The autocorrelation and its sparse spectral factor.

For each polynomial H(z) we compute its autocorrelation

R(z) on which we test our algorithms. To validate a spec-

tral factor we allow a maximum difference of εh from the

original one, in absolute value. For obtained spectral factors

different than the original one, but with the same number of

coefficients, we have compared the difference between their

autocorrelations in absolute value up to εo.

We test the two algorithms—GreedyM and GreedyR—on

sets of N = 1000 autocorrelation polynomials of length 16,

i.e. of degree n = 15, as in [7]. The tests are made with

random endpoints, hence the polynomials can have smaller

order than n. Table 1 shows the results we have obtained for

different levels of sparsity. In Figure 2 we make a comparison

between different algorithms; the results for [7] are extracted

from the paper. The results show that the choice of the ob-

jective function is of great importance; the variant used in the

problem (10) performs better than the one used in problem

(9), i.e. GreedyM offers better results than GreedyR.

We move now to filters of larger support. We test our al-

gorithm GreedyM on polynomials of size 64 and 8192 and

compare the results with the ones extracted from [8]. Figures

3a and 3b show the rate of success for our algorithm in com-

parison with the results reported in [8]. We ran N = 1000
and N = 100 tests for n = 63 and n = 8191, respectively.
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[7]
GreedyR
GreedyM

Fig. 2: Percentages of success using different algorithms for

n = 15, N = 1000.

The figures show that our algorithm obtains the spectral fac-

tor in more cases than the algorithms used in [8]. Note that

the results reported in [8] for n = 63 are made using a convex

optimization algorithm, an updated version of the one from

[7], while the results reported for n = 8191 are made us-

ing an algorithm based on combinatorial analysis, with high

probability to succeed if s = O(n1/3). Moreover, the convex

optimization algorithms from [7] and [8] cannot run on an av-

erage PC for the n = 8191 case, due to high memory usage.

Our method runs faster than the method from [7] too, e.g. for

n = 63, s = 6, for a single autocorrelation polynomial, our

algorithm provides the spectral factor in 1.6 seconds, while

the algorithm from [7] needs 25 seconds to find the spectral

factor, with given s, using a 2.7 GHz computer.

We have used εh = 10−5 and εo = 10−4.

5. CONCLUSIONS

We have proposed a spectral factorization algorithm for auto-

correlations of sparse polynomials based on SDP. We charac-

terize sparse polynomials using sparse bases. The algorithm

aims to find the sparse spectral factor for the autocorrelation

polynomial. The method seeks the support of the spectral

factor by removing an element from the current basis and at-

tempting to extract the spectral factor using an SDP problem.

If the problem has no solution, we insert the element back

into the basis and remove the next one. If a solution is ob-

tained, the support of the spectral factor gives the new ba-

sis. The greedy algorithm stops reducing the size of the basis

when a smaller size basis can no longer generate the support

of the autocorrelation. Comparing our algorithm with previ-

ous methods we have shown that our algorithm can be more

reliable and its running time is smaller.
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Table 1: Percentages of success for n = 15, N = 1000.

s 3 4 5 6 7 8 9 10 11 12 13 14

GreedyM (%) 97.2 89.4 83.8 61.8 37.5 17.5 7.3 2.4 2 2.5 1.2 1.8

GreedyR (%) 78.4 74.2 66.8 45.8 22.9 8.8 2.5 0.7 0.2 0.3 0 0
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(a) n = 63, N = 1000.
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(b) n = 8191, N = 100.

Fig. 3: Percentages of success using different algorithms.
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