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ABSTRACT

Compared to OFDM, Filter Bank Multi-Carrier (FBMC) sys-

tems can offer improved Time-Frequency Localization (TFL)

features. In this paper, using the TFL criterion, we present an

analytical derivation of FBMC prototype filters that insures

the Perfect Reconstruction (PR) property for the two most im-

portant classes of FBMC systems: Filtered MultiTone (FMT)

and OFDM with Offset QAM.

Index Terms— FBMC; FMT; OFDM; OFDM/OQAM;

Time-frequency localization.

1. INTRODUCTION

Since its adoption for digital audio and video broadcasting

(DVB, DAB), the orthogonal frequency division multiplexing

(OFDM) has gained a growing interest for transmission over

multipath channels and is undoubtedly now the flagship of

all MC modulations [1]. However, researchers still expect

to find better transmission schemes and most often propose

alternatives that are based on FBMC schemes which can also

take advantage of efficient implementation algorithms using

the discrete Fourier Transform [2]. In these FBMC schemes,

the rectangular OFDMwindow is replaced by a smoother one,

thus leading to an improved frequency behavior.

To modify the window function, while still preserving the

PR property, one has to find Degree of Freedom (DoF). For

FMT, which basic scheme is reported in Fig. 1, the DoF

comes from the oversampling ratio N/M , with N > M . In

the case of the OFDM/OQAM system, the DoF is obtained

by a decomposition of the input QAM data symbols, denoted

cm,n in Fig. 1, taking alternately in time (index n) and fre-
quency (indexm), their real and imaginary part [3, 4].

For these two types of modulated systems, each con-

stituent filter of the filter bank is obtained by an exponential

modulation of the window function, the “so-called” prototype

filter, we denote by p. Taking, as an example, the M -carrier

Part of this work has been performed in the framework of the FP7 project

ICT-317669 METIS. P. Siohan would like to acknowledge the contributions

of his colleagues in METIS, although the views expressed are those of the

authors and do not necessarily represent the project.

FMT scheme depicted in Fig. 1, the time response for the

M filters, Fm(z),m = 0, · · ·M − 1, of the synthesis filter
bank can be expressed as fm[k] = p[k] exp(j 2πmk

M ), with
j2 = −1 and k = 0, · · · , L − 1, for a prototype filter of
length L. Thus, there is only one unique filter to determine,
since all subchannels filters are derived from p. Indeed, as

we assume the considered FBMC systems are orthogonal, the

Hm(z),m = 0, · · ·M − 1 filters are also derived from p.

F0 (z) N

N

N

N

N

N F (z)1

(z)FM−1

0

(z)

H

H

(z)

1

M−1H (z)

0,nc

1,nc

cM−1,n

1,nc

0,nc

+
s

^

^
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Fig. 1. Schematic representation of a FMT system (N > M ).

The design problem is to find the L variables p[k] that
lead to an appropriate waveform, s, for a given transmission
channel. Generally, the solution results from an optimization

procedure carried out for a given design criterion, for instance

minimization of the out-of-band energy [5, 4, 6] or maximiza-

tion of the time-frequency localization (TFL) [3], [7]. In pre-

vious papers, the authors only focus on the design of a single

type of FBMC system, e.g. FBMC/FMT in [8], [5], [9] or

FBMC/OQAM in [3, 4]. Generally also, it is considered that

the length of the prototype filter must be much higher than the

number of subchannels, e.g. L = mM with m = 3 or 4 in

[4] or m ∈ {18, 20, 30} in [5]. However, it has been shown
recently that, for time-varying transmission channels, shorter

prototype filters (L = N ) could also provide good perfor-

mances with FBMC/FMT [6, 10] or FBMC/OQAM systems

[11]. This is particularly true for prototype filters that are de-

signed according to the TFL criterion.

Therefore, in this paper, we only focus on the TFL cri-

terion, for which we derive closed-form expressions of the

prototype filter coefficients. Our approach may lead to flex-

ible implementation for applications where the system pa-

rameters, e.g. the number of subchannels, may vary in time.
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Compared to [9], our derivation now also includes the case of

FBMC/OQAM systems. We also provide an accuracy mea-

sure which gives a precise indication of how close we are from

TFL optimality. This measure shows that we can now insure

a nearly optimal result for both FBMC (FMT and OQAM)

systems containing up to thousands of subchannels.

Our paper is organized as follows. In Section 2, we re-

view the main features of the low complexity PR-FBMC sys-

tems we are considering and also present the TFL optimiza-

tion problem. Section 3 presents an analysis of the optimized

prototype filters. Our analytical derivations are detailed in

Section 4 and design examples are provided in Section 5.

2. GENERAL PRESENTATION

2.1. Low complexity FBMC systems

The digital baseband of the FBMC systems we consider in

this paper can be represented by the generic modulator struc-

ture shown in Fig. 2. As the implementation of the prototype

filter only involves one multiplication per sub-carrier, all the

derived FBMC systems, detailed below, are of relatively low

complexity.

c

c

c

s

K−1,n

U VW

1,n

0,n

p[N−1]

p[1]

p[0]

P/S

Fig. 2. Generic scheme for low complexity FBMC systems.

2.1.1. The CP-OFDM reference

For the CP-OFDM modulator, we have M data symbol in-

puts, i.e. K = M . U,W and V correspond to the M ×M
identity matrix, theM -size discrete Fourier transform (DFT)

and the CP extension, respectively. Otherwise said, the CP-

length is N −M .The p[k] coefficients are the constant value
numbers of the rectangular window.

2.1.2. FBMC/FMT

Then, we also have K = M , while U andW are theM -size

identity and DFT matrices, respectively. V corresponds to a

N ×M cyclic extension matrix [10].

2.1.3. FBMC/OQAM

Then, we have K = N = 2M . The U block corresponds to

the conversion process transforming the QAM input complex

symbols into OQAM real symbols [3], [7]. W and V are N -

size DFT and identity matrices, respectively.

Though, the two FBMC systems have different features

they may lead, for N = 2M , to an identical filter design

problem for finding the p[n]’s.

2.2. The PR FBMC condition

If the p[k] coefficients in Fig. 2 satisfy orthogonality condi-
tions then we get a PR system, i.e. ĉm,n = αcm,n, m =
0 · · ·K − 1,∀n, with α > 0. Based on [12, (10)], the PR con-

dition for the prototype filter of FMT systems may be written,

for 0 ≤ k ≤M − 1, as
∑

ν

p[k + νM ] p[k + νM + sN ] = δs, s ≥ 0, (1)

where p[n] = 0 for n < 0 or n ≥ L and δs = 1 if s = 0 and 0
if s 6= 0. Then, setting N = 2M , we exactly recover the PR

condition given in [13] for anM -band cosine modulated filter

banks (CMFB) using a linear phase prototype filter, which is

also the one of a N -sub-carrier OFDM/OQAM system [3].

Therefore, even if the corresponding realization schemes are

different, a prototype filter satisfying (1) can be used for the

two main classes of FBMC systems. In what follows, we only

focus on (1) in the case where L = N .

Let M0 and N0 be relatively prime integers with 1 ≤
M0 < N0. For any integer ∆ ≥ 1, let M = ∆M0, N =
∆N0, L = ∆N0. To get a maximum theoretical spectral ef-

ficiency we impose that N0 = M0 + 1. The unique solution
can be expressed using a set of ∆ angles [6, (78)]

p[i] = cos θi, p[M + i] = sin θi, 0 ≤ i ≤ ∆ − 1,

p[k] = 1, ∆ ≤ k ≤M − 1. (2)

The problem is to optimize this set of ∆ angles.

2.3. Optimization variants

Based on [14] and denoting ||P || =
(
∑

n p[n]2
)

1

2 , the TFL

measure, ξ, for the discrete sequence {p[k]} is such that

T =

∑

n(n− 1
2 ) (p[n] + p[n− 1])

2

∑

n (p[n] + p[n− 1])
2 ,

m2 =
1

4||P ||2
∑

n

(n− 1

2
− T )2 (p[n] + p[n− 1])

2
,

M2 =
1

||P ||2
∑

n

(p[n] − p[n− 1])
2
,

ξ =
1√

4m2M2

. (3)

Then, the optimal TFL is the one satisfyingmax{p[k]} ξ(p)
or maxθi

ξ(p). If instead, we take advantage of the compact
representation (CR) method [15], the optimization is carried

out using a parameter set with reduced dimension. The CR

idea is to express the θi angles as follows

θi = f(xi) where xi =
2i+ 1

2∆
(4)

where f is, in general, a polynomial function and the coeffi-

cients of the CR are its coefficients. As the degree of f can be

2



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

much smaller than ∆, while still providing a nearly optimal

solution, the corresponding design time can be significantly

reduced compared to the one resulting from the two direct

formulations. Furthermore, as shown in [9], reducing f to

a simple linear function allows us to get very simple closed-

form expressions for the p[n]′s. Compared to [9], our aim is

to consider a wider range for the ∆ parameter, i.e. a higher

number of subchannels. In order to also provide a design so-

lution for FBMC/OQAM systems, we also include the case

whereM0 = 1, i.e. N = 2M (see subsection 2.1.3).

3. ANALYSIS OF PR-FBMC SYSTEMS

3.1. Phase linearity

The ∆-order polyphase decomposition of the prototype filter

P (z), z-transform of the {p[n]} sequence, reads as

P (z) =

∆−1
∑

i=0

z−iPi(z
∆), (5)

where, using (2), we get Pi(z) =
∑M0

n=0 pi[n]z−n with

pi[0] = cos θi, pi[M0] = sin θi and pi[n] = 1, 1 ≤
n < M0. An optimization of the ∆ independent angles

leads to the results in Fig. 3. The corresponding graphs,

for M0 = 1, 2, 3, 5 and ∆ = 25, show the variations of

ψM0,∆,i = θM0,∆,i − π
2 (1− 2i+1

2∆ ), where θM0,∆,i designates

the value of the i-th optimal angle.

−0.08
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−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  5  10  15  20 i

ψM0,25,i

M0=1

M0=2

M0=3

M0=5

Fig. 3. Variations of the optimal angles for M0 = 1, 2, 3, 5
and ∆ = 25.

Besides, the regular behavior of the angles θM0,∆,i w.r.t. i,
already observed in [15], one can also see that an approximate

symmetry property appears with ψM0,∆,i
∼= −ψM0,∆,∆−1−i,

i.e. θM0,∆,i
∼= π

2 −θM0,∆,∆−1−i. This observation, also used

in [9], indicates that optimal P (z) have a nearly linear phase
behavior, i.e. p[k] ∼= p[N−1−k]. Thus, in order to reduce the
number of parameters, we choose to use a CR, we denote by

f , that will structurally guarantee that P (z) is symmetrical,

expressing it as follows

f(x) =
π

4
+ t

d−1
∑

k=0

βkT2k(t), t = 2x− 1, (6)

where Tn(t) is the Chebyshev polynomial of degree n. This
function f depends on the d parameters βk, 0 ≤ k ≤ d − 1
where d designates the degree of the CR. Note that f satisfies
the property symmetry f(1−x) = π

2 −f(x) that corresponds
to the one characterizing the optimal angles.

3.2. Performance w.r.t. the TFL criterion

To validate the choice of this new CR (6), we compare the

results it provides with the ones where the angles are directly

optimized. Optimization of the TFL criterion is carried out

for d values going from 1 to 4 and for 1 ≤ ∆ ≤ 200.
When a direct optimization of the angles leads to the opti-

mal TFL denoted ξopt(M0,∆), we compute the relative error

w.r.t. ξ
(d)
opt (M0,∆), optimal localization for the degree d, by

ε(d)(M0,∆) = σ log10

∣

∣

∣

∣

∣

ξ
(d)
opt (M0,∆) − ξopt(M0,∆)

ξopt(M0,∆)

∣

∣

∣

∣

∣

, (7)

where σ = −1 if the value ξopt(M0,∆) is approached from
below, and +1 otherwise. In this later case, the CR gives a

better result than the optimization over angles.

Using this measure, a large set of optimizations leads to

several observations. For a sufficient value of ∆, whenM0 =
1 or 2 a degree d = 3 is required to get ε(d)(M0,∆) ≤ 10−4,

while for higher values of M0, say e.g. M0 = 10, d = 2

is enough and then when d = 4, we get ξ
(4)
opt (M0,∆) >

ξopt(M0,∆), i.e. σ = +1.
As we target an accuracy of 10−4 in a large range of ∆

values, ∆ ∈ [4, 200], according to the value ofM0, we have

to use a CR with either d = 2 or 3. Thus, for M0 ∈ [4, 20],
we will use a database containing the corresponding optimal

values found with (6) for β0(M0,∆) and β1(M0,∆). While

for M0 = 1, 2 or 3, the corresponding database will include

furthermore the optimal values found for the three βk param-

eters, i.e. including the set of optimized β2(M0,∆) values.

4. ANALYTICAL DERIVATION OF PR FBMC

4.1. Compact representation with d = 2

Setting

γ0(M0,∆) =
π

4
+ β0(M0,∆) + β1(M0,∆), (8)

and t = 2x− 1 the CR in (6) writes for 0 ≤ x ≤ 1, as

f(x)=
π

2
(1 − x)+t[γ0(M0,∆)+2(t2−1)β1(M0,∆)]. (9)

In a first step, we need to study the behavior of β1(M0,∆)
and γ0(M0,∆), as a function of ∆ andM0. Observing firstly

3
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that with our database β1(M0,∆) approximatively behaves

as a function given by β1(M0,∆) = a(M0) + b(M0)/∆,

a linear regression gives the coefficients a(M0) and b(M0)
which minimize

200
∑

∆=4

[

β1(M0,∆) −
(

a(M0) +
b(M0)

∆

)]2

. (10)

In Step 2, we observe that 1/
√

a(M0) and 1/
√

b(M0) behave
as nearly linear functions of M0. Again, a linear regression

can be used to find them, leading to

a(M0) =
X0

(X1 +M0)2
, b(M0) =

X2

(X3 +M0)2
, (11)

where each Xi, i = 1, . . . , 4, denotes a constant term.
In Step 3, it can be noticed that, for fixedM0, the inverse

of γ0(M0,∆) has a nearly linear variation in function of ∆.

Two functions, denoted c(M0) and d(M0), can be then deter-
mined by linear regression

1

γ0(M0,∆)
∼ c(M0) + d(M0)∆. (12)

Then, setting X4 = 1.273, value obtained after a few tri-

als of a dichotomous process, we are able to get a function

(c(M0) − X4)
−1/2 which is nearly linear. Similarly, set-

ting X7 = 1.273, we get another linear function (d(M0) −
X7)

−1/2 w.r.t. M0.

By linear regression, we find the equations of the straight

lines approximating these curves

c(M0)=X4+
X5

(M0+X6)2
, d(M0)=X7+

X8

(M0+X9)2
,

(13)

where each Xi, i = 4, . . . , 9, denotes a constant term.
Using (11) and (13) with the constant termsX = (Xi, i =

0, . . . , 9), β1(M0,∆) and γ0(M0,∆) functions are thus ap-
proximated as follows

β̃1(M0,∆, X) = a(M0) +
b(M0)

∆
, (14)

γ̃0(M0,∆, X) = [c(M0) + d(M0)∆]
−1
. (15)

Finally, starting from the initial previously computed val-

ues of X , a global optimization is carried out, for M0 =
4, . . . , 20 and ∆ = 4, . . . , 200. The aim is to minimize

the mean square of β1(M0,∆) − β̃1(M0,∆, X) and of

γ0(M0,∆) − γ̃0(M0,∆, X). The optimized values of

Xi, i = 0, . . . , 9 are given in Table 1.
To summarize, starting from (9) and using (12) for γ0 ex-

pression and (10) for β1 approximation, the ∆ angles θi with

i = 0, · · · ,∆ − 1 are computed as follows

θi = f(xi) =
π

2
(1 − xi) + (2xi − 1)

[

1

c(M0) + d(M0)∆

+2[(2xi − 1)2 − 1][a(M0) +
b(M0)

∆
]

]

, (16)

i Xi i Xi

0 0.19403124832632 5 2.90492587969539

1 0.40864162382945 6 0.86264166373416

2 0.35329881606485 7 1.27240200581068

3 0.39920459787503 8 0.51760963875876

4 1.27060234434206 9 0.52820298059447

Table 1. Optimized constant terms Xi, 0 ≤ i ≤ 9 in the

approximations of β1(M0,∆) and γ0(M0,∆).

where xi = 2i+1
2∆ .

4.2. Compact representation with d = 3

For M0 ∈ {1, 2, 3}, 4 ≤ ∆ ≤ 200, a degree d = 3 is

required, so we now set γ0(M0,∆) = π
4 + β0(M0,∆) +

β1(M0,∆) + β2(M0,∆), and then the CR in (6) writes as

f(x) =
π

2
(1 − x) + γ0(M0,∆)t+ 2t(t2 − 1)[β1(M0,∆)

+4β2(M0,∆)t2], t = 2x− 1, 0 ≤ x ≤ 1, (17)

Again, we proceed to a succession of linear regressions and

to a final global optimization that lead to the following set of

relations, where constants XM0,i are reported in Table 2,

γ0(M0,∆) ∼ 1

XM0,0 +XM0,1∆
, (18)

β1(M0,∆) ∼ XM0,2 +
1

XM0,3 +XM0,4∆
, (19)

β2(M0,∆) ∼ XM0,5 +
1

XM0,6 +XM0,7∆
. (20)

i X1,i i X1,i

0 4.1284847578 4 −2.1107642825 101

1 1.9727736832 5 −6.6774831778 10−3

2 1.2781855004 10−1 6 −1.0150558822 102

3 −1.4505800309 102 7 1.9143799092 10−2

i X2,i i X2,i

0 1.8972250436 4 −9.2112632592 101

1 1.4476020206 5 −5.2062788263 10−3

2 4.2968806649 10−2 6 5.9290534083 102

3 −7.7723347312 102 7 9.5812941281 101

i X3,i i X3,i

0 1.5475698371 4 −2.9101929435 102

1 1.3525325059 5 −2.4560808315 10−3

2 2.0804395123 10−2 6 3.6665827460 102

3 −4.5492785604 103 7 2.2289866975 102

Table 2. Optimized constant terms XM0,i for M0 = 1, 2, 3,
0 ≤ i ≤ 7.

4
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5. DESIGN EXAMPLES

Our analytical derivations guarantee that ξ
(d)
opt < 10−4 and,

furthermore, give good results outside the ranges of optimiza-

tion. In Figs. 2 and 3, which show the time and frequency rep-

resentations of prototype filters obtained for M0 = 1, 8, 32
and ∆ = 2048, the relative errors for optimized TFL are

equal to 5.7 10−4, 4.37 10−6 and 1.54 10−8, respectively.

If, as expected, the TFL decreases with increasing M0: ξ =
0.906 (M0 = 1); 0.389 (M0 = 8); 0.195 (M0 = 32), these
values outperform the ones we get for OFDM: ξ = 0.019;
9.02 10−3; and 4.71 10−3, respectively.
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Fig. 2. Time responses of the optimal TFL prototype filters for

∆ = 2048 and M0 = 1, 8, 32. For M0 = 8 and 32 only the

6000 first coefficients are plotted.
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Fig. 3. Magnitude frequency responses of the optimal TFL

prototype filters for ∆ = 2048 and M0 = 1, 8 and 32..

6. CONCLUSION

Our analysis of low complexity FBMC systems has confirmed

that optimal prototype filters w.r.t. TFL are linear phase [9].

Then, using an appropriate compact representation of low de-

gree, we could analytically derive, for a broad range of FMBC

parameters, accurate values of the prototype filter coefficients.
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