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ABSTRACT

Asynchronous signal processing addresses the need for ana-
log devices that provide efficient representation and recon-
struction of data at a low–power consumption. In this pa-
per we propose an asynchronous filter–bank decomposer for
sparse signals commonly found in biomedical applications.
It is based on a modified version of the asynchronous sigma
delta modulator (ASDM), a non–linear feedback system that
maps the amplitude of a bounded signal into a binary sig-
nal. Signal reconstruction requires the solution of an inte-
gral equation that depends on the zero–crossing times of the
ASDM output. Letting the input be the derivative of the sig-
nal, the integral equation is reduced to a first–order difference
equation of which the input is a function of the zero–crossing
times and a scale parameter of the ASDM. Using a bank of fil-
ters to determine the corresponding scale parameters we ob-
tain a decomposer that samples non–uniformly and that has a
recursive reconstruction. Thus the range of frequencies is set
by the bank of filters and the width of local windows is set
by the characteristics of the derivative of the signal at those
frequencies. To illustrate the procedure we consider actual
signals.

Index Terms— Asynchronous signal processing, sigma
delta modulator, sparse signals, bank of filters

1. INTRODUCTION

An increasing number of wireless sensors and remote health
monitoring devices call for the evolution of conventional sig-
nal processing algorithms. Traditional synchronous methods
are not sufficient to address emerging needs of low power con-
sumption and efficient representation of the sensory informa-
tion. As an alternative, a large body of research has been es-
tablished in the area of asynchronous digital signal processors
as well as in asynchronous analog to digital converters.

As the first step in analog to digital signal representation,
sampling methods constitute an important part of the innova-
tions. It has been shown that structured data, e.g. sparse sig-
nals, can be efficiently sampled at far below the Nyquist rate
[1, 2]. Non–uniform sampling suits sensor network applica-
tions in emerging biomedical devices [3]. Furthermore, many
biological signals are bursty by nature and only need to be

sampled in the regions where data is significant. Speech sig-
nals for instance, can also be considered as bursty since utter-
ances are interrupted by periods of silence. In many biomed-
ical applications, such as in brain–computer interfacing, im-
plementing non–uniform samplers asynchronously is advan-
tageous due to the small size of the devices. This is not
only because these clock–free designs are free from aliasing
and consume less power, but also for health reasons: high–
frequencies due to the clock could harm the patient. A well-
known non–uniform sampling scheme is level crossing (LC)
[4] which has been used for analog processing [5]. The sam-
ple values in LC are collected only when a specified quantiza-
tion level is attained, thus making it advantageous in biologi-
cal and sensor applications where the significant information
in the signal is sparse. A drawback of LC sampling, however,
is that a set of quantization levels needs to be specified a-
priori and that the sampling times and the corresponding am-
plitudes must be kept. Furthermore, only a multilevel recon-
struction is possible from the LC sampling. However, the LC
sampler is not hampered by aliasing or quantization error and
is employed in analog processing using digital methods. In
[6] a time-encoding method using asynchronous sigma delta
modulators has shown to be equivalent to an LC sampler with
quantization levels set as local estimates of the signal average.

In this paper we investigate a new signal–dependent non–
uniform sampling and reconstruction approach based on the
asynchronous sigma delta modulator (ASDM) — a non-
linear feedback system capable of mapping the amplitude of
its bounded input into a binary output signal. The ASDM
is a low–power device and the zero-crossing times of its
output provide a computationally inexpensive reconstruction
method. Although there has been considerable research con-
ducted on non–uniform sampling, it typically relies on the
assumption that the analyzed signals are band–limited. We
propose a bank of filters structure to allow to analyze in de-
sired frequency ranges, independent of whether the signal
is band–limited or not. Furthermore, we modify the orig-
inal structure of the ASDM [7] so as to obtain a recursive
equation that permit us to obtain non–uniform samples in the
analysis part of the procedure. Zero–crossing times and scale
parameters of the modified ASDM in the synthesis part of the
procedure provide the regeneration of the samples which can
be interpolated to reconstruct the original signal.
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The details of the proposed sampler is given in Section
2, while Section 3 describes the overall sampling and re-
construction set–up which includes the proposed sampler,
an iterative estimator and a polynomial interpolator. In Sec-
tion 4, sparse signal illustrations are considered to highlight
the biomedical applications where sparse signals are typi-
cally processed. However, the principles presented apply to
processing other signals as well.

2. ASYNCHRONOUS SAMPLER

The asynchronous sigma delta modulator (ASDM) is a non-
linear feedback system consisting of an integrator and a
Schmitt trigger that maps the amplitude of a bounded signal
into a binary signal. The model shown in Fig. 1 has been
used for analyzing the ASDM [7]. Unlike the conventional
delta modulator there is no clock involved in the ASDM and
therefore the input signal is not affected by magnetic inter-
ference and high power consumption issues related to clock
switching. Also the ASDM is robust to noise as voltage fluc-
tuations due to noise is desensitized by the hysteresis of the
Schmitt Trigger. The working characteristics and stability
of the modulator have been studied [8] and its implementa-
tion as a time-encoder has been used in various biomedical
applications [9].

+
�

x(t)
Schmitt Trigger

�� �

+b

�b

z(t)
1
�

�
e(t)dt

e(t)

Fig. 1. Model for analyzing ASDM

For a bounded signal x(t), |x(t)|  c, the following con-
nection between the signal and the zero-crossing times {t

k

}
of the binary output z(t) has been shown [8]:

Z
tk+1

tk

x(⌧) d⌧ = (�1)k[�b (t
k+1 � t

k

) + 2�] (1)

where b > c is the amplitude of z(t), � is a threshold value
used in the Schmitt trigger, and  is a scale parameter that
depends on the maximum frequency of the input signal. For
simplicity we let b = 1 — the signal is normalized so that its
c < 1 — and � = 0.5. As shown in [10], the scale parameter
 is bounded by the maximum frequency f

max

of x(t):

  1 � c

2f

max

(2)

this is so as to guarantee that {t

k

} satisfy the condition [8]

max
k

(t
k+1 � t

k

)  1

2f

max

.

Because for sparse–on–time signals is not clear the range of
frequencies it is not possible to determine values for . We
will thus consider a joint time–frequency latticing with known
frequency ranges and time–windows set by the corresponding
 for each of these ranges, leading into a bank of filters im-
plementation as shown later.

The encoding of the zero–crossing times of the binary out-
put of the ASDM for biomonitoring has been shown in [9],
and recently we have shown that a noticeable compression of
the information can be achieved using multi-level approxima-
tions [2]. The main challenge in non–uniform sampling is in
the reconstruction. Depending on the sparseness of the sam-
pling times in the LC reconstruction matrices tend to be ill–
conditioned [11] and the methods are computationally expen-
sive and not exact. Using the ASDM, we only need to keep
the zero–crossing times to reconstruct the signal by approx-
imating the integral equation 1[2]. Moreover, the sampling
nature of the ASDM is not clear.

1/̃

z̃(t)
Schmitt Trigger

+

� �� �

+b

�b

dx(t)/dt

x(t)

Reduced model

�
dx(t)

dt

dt

�
z̃(t)dt

Fig. 2. Model for modified–ASDM

To see the sampling nature of the ASDM and how to solve
the integral equation, consider the input of the ASDM to be
the derivative of the signal, dx(t)/dt, rather than the signal
itself. For this input equation (1) becomes

Z
t̃k+1

t̃k

dx(⌧)

d⌧

d⌧ = (�1)k[�(t̃
k+1 � t̃

k

) + ̃] (3)

This is equivalent to extracting the integrator from the feed-
forward loop in the model of Fig. 1 to obtain the equivalent
feedback system shown in Fig. 2. We thus obtain the follow-
ing recursive equation:

x(t̃
k+1) � x(t̃

k

) = (�1)k[�(t̃
k+1 � t̃

k

) + ̃] (4)

with a value x(t̃0) at the initial time t̃0 of the process. Equa-
tion (4) iteratively returns sample values at sampling in-
stants {t̃

k

} given by the ASDM for the input dx(t)/dt. It
also gives a formulation for the recovery of the signal from
{t̃

k

, ̃, x(t̃0)}.
The recursive procedure is simple and depends on the

derivative of x(t). The iteration accuracy depends on the
quantization of the time instants [12]. The stability condi-
tions of this model are obtained as in the original model from
the derivative as follows:
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• The amplitude bound is now

c

d

= max
����
dx(t)

dt

���� < 1.

• The scale parameter should then satisfy

̃  1 � c

d

2f̃

max

where f̃

max

is the maximum frequency of dx(t)/dt.

In the case of sparse-on-time signals, this creates the same
problem as before because the maximum frequency of the
derivative of the signal is not known a priori. Furthermore,
we need to connect the value of c

d

with the signal rather than
its derivative. In this modified setup we still consider the pa-
rameters b and � to have the values of 1 and 0.5.

The bound on the amplitude of the derivative c

d

, can be
associated with the bound c of the signal itself. If we let the
bound on x(t) be c, and assume x(t) is continuous we have

����
dx(t)

dt

����  lim
T!0

|x(t
i

+ T )| + |x(t
i

)|
T

= lim
T!0

2c

T

Letting T  1/(2f

max

), where f

max

is the maximum fre-
quency of x(t) we have

c

d

 2c

T

(5)

Again, the lack of knowledge of f

max

is an issue to be ad-
dressed by the proposed bank of filters.

The dependence of the recursion on ̃ can be eliminated
by considering evaluating (1), for b = 1 and � = 0.5, in two
consecutive time intervals giving the following relation:

Z
tk+2

tk

x(⌧) d⌧ = t

k+2 � 2t

k+1 + t

k

and as such when replacing the signal by its derivative as the
input in the ASDM we have

x(t̃
k+2) � x(t̃

k

) = t̃

k+2 � 2t̃

k+1 + t̃

k

This not only eliminates the value of ̃ in the calculations but
reduces the number of sample values {x(t̃

k

)}. For dense sam-
pling, the additional values obtained before are not needed to
recover the x(t) using polynomial interpolation. This is also
improves the compression.

Finally, inputing dx(t)/dt into the modified ASDM is
equivalent to inputing x(t) � x(t0) by putting the differentia-
tor and the integrator together in Fig. 2. However, the bound
c

d

and the value of ̃ depend on the derivative, and values
for these parameters will be available once we set a maxi-
mum frequency for the signal which will be done by passing
the signal through a filter of known bandwidth. Interestingly
enough, an earlier realization of the asynchronous sigma delta
modulator [13] has an integrator only in the feedback loop as
shown in Fig. 3 which is similar to our reduced model. An ex-
ample illustrating the non-uniform sampling is presented later
in section 4.
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T = RC

Fig. 3. (a)Asynchronous Delta-Sigma Modulator, (b) Model
used for analyzing ADSM

3. BANK OF FILTERS DECOMPOSER

As indicated the proposed asynchronous sampler suffers from
the lack of knowledge of the frequency content of the signal or
its derivative. We thus propose a joint time–frequency lattice
where the frequency ranges are given and the time–windows,
connected with the scale parameters, depend on the the maxi-
mum of these ranges and on the signal being processed. This
is accomplished by using a bank of filters where the band-
widths are set so that the desired frequencies are covered and
that the filters constitute an all–pass filter when considered
together. The schematics of the analysis and synthesis are
shown in Fig. 4. The cutoff frequency of the filter determines
the values of ̃

i

and c

di

for the ith filter. As indicated before,
we use equation 6 in the recovery as it requires fewer samples
which are sufficient to recover the signal using polynomial
interpolation.

Once the amplitude of the input signal is normalized us-
ing equation (5) and the maximum frequency of the input is
known, Modified-ASDM returns non-uniform samples drawn
at a rate proportional to change in the signal. As it is discussed
in Section 2, the ASDM requires the maximum frequency of
the signal to adjust its parameter . The effect of different 

values reflects in windows of different width when comput-
ing 6 as indicated in [10, 2]. Also, here we again avoid the
derivative as input and reformulate the problem with respect
to the signal itself. This can be done by adding a zero to each
of the filters to make x(t) the input rather than its derivative
(see Fig. 5). We also include an extra branch to estimate the
dc-bias, which is lost when the derivative is calculated, if the
signal has any.

After filtering the input, we set the

̃

i

=
2⇡(1 � c

d

)

⌦
i

, i = 0, 2, .., M � 1

where ⌦
i

is the cut-off frequency of the i

th bandpass-filter,
and M is the number of branches. Assuming the time zero–
crossings and the scale parameters in each branch are repre-
sented and transmitted with high precision, the iterative es-
timator reconstructs the sample values according to (4). Be-
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Fig. 4. Asynchronous Decomposer

cause of the distribution of the samples, the density depend on
the change in the signal, first order polynomial interpolator is
shown to be a good fit for the samples values. The number of
zero–crossing t̃

ik

can be reduced by noticing that whenever
the signal becomes constant the output of the MASDM be-
comes periodic, and so if this is detected only an initial value
is needed for these segments.

H(s)

dx(t)
dt � s H(s)

x(t) dx(t)
dt

Fig. 5. The equivalent filters

In addition to being signal dependent, low-power sam-
pling technique, the advantage of this overall scheme is that
it does not require the knowledge of the maximum frequency
of the input. It provides a complete description of the sig-
nal without knowing its bandwidth. The illustration of the
method on synthetic and sparse data is provided in the next
section.

4. SIMULATIONS

To illustrate the performance of the modified ASDM as an
asynchronous sampler, we use it to sample a low–changing
component of an EEG signal. The scale parameter is cho-
sen from the maximum frequency of this signal. The samples
of the signal obtained non–uniformly are given by the asyn-
chronous sampler.

For the second simulation we considered the same EEG
signal in the bank of filters structure. The bank of filters con-
sists of four band–pass filters, and an ASDM that computes
the dc component of the signal — adding to all-pass filter
covering the bandwidth of interest of the signal. The band-
width of the signal was 50 Hz, and the bandpass filters cov-
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Fig. 6. Asynchronous Sampler
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time

Fig. 7. Reconstructed signals corresponding to outputs of
bandpass filters.

ered each one-fourth of this bandwidth. Figure 7 displays the
reconstructed signals corresponding to the outputs of the four
band–pass filters. The dc component was found to be zero. A
linear interpolator was used to get analog reconstructed signal
from the outputs of the iterative estimators. Figure 8 shows
the reconstructed signal as a sum of the reconstructed signals
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in Fig. 7. The error of the reconstruction is shown at the
bottom.
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Fig. 8. Reconstruction by linear interpolator of the overall
signal.

For the final simulation we consider a 0.2–second phono-
cardiographic recordings of heart sounds sampled at 4 kHz.
The upper plot in Fig. 9 displays the original signal and the
lower 4 plots display the reconstructed signals corresponding
to each of the bandpass filter outputs, with the reconstruction
error show on the right side.
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Fig. 9. (a) Original signal; (b)-(e) reconstructed filter outputs
and (f)-(i) associated errors.

5. CONCLUSIONS

In this paper we presented an asynchronous bank of filters ap-
proach to the sampling and reconstruction of non–stationary
signals. The approach is to lattice the time–frequency plane
by selecting frequency ranges to determine the scale param-
eters of modified ASDMs. By changing the structure of the
ASDM we obtain a recursive way to obtain the sample values
as well as to reconstruct the analog signal. The resulting anal-
ysis and synthesis parts of the procedure resemble wavelet de-
composers. To illustrate our approach we considered biomed-
ical recordings.
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