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ABSTRACT

In this paper, we consider FM demodulation as an applica-
tion of the decomposition of non–stationary signals. Non–
stationary signal decomposition can be done using either the
empirical mode decomposition (EMD) or the Discrete Linear
Chirp Decomposition (DLCT) methods. These methods de-
compose non-stationary signals using local time-scale signal
characteristics. While the EMD decomposes the signal into
a number of intrinsic mode functions (IMFs), the DLCT ob-
tains a parametric model based on a local linear chirp model.
Analytically the DLCT considers localized zero–mean lin-
ear chirps as special IMFs. The DLCT is a joint frequency
instantaneous–frequency orthogonal transformation that ex-
tends the discrete Fourier transform (DFT) for processing of
non–stationary signals. FM demodulation is commonly done
by computing the signal derivative to convert it into an ampli-
tude demodulation. We will show that the demodulation can
be approached with the EMD and the DLCT and that the sec-
ond method provides better results. The performance of the
DLCT and the EMD are illustrated and compared when used
as an FM demodulation scheme in software defined radio.

Index Terms— EMD, DLCT, FM demodulation, Hilbert–
Huang spectrum

1. INTRODUCTION

The processing of non–stationary signals in practical applica-
tions is complicated by the continuous variation of local time–
scale signal characteristics. Over the years, many approaches
have been proposed to represent such signals: from wavelets
to time–frequency distributions to the more recent empirical
mode decomposition and Hilbert spectrum.

Using the concept of intrinsic mode functions (IMFs), or
functions with a point–wise zero–mean envelope and match-
ing extrema and zero–crossings, Huang [1] proposed the
empirical mode decomposition (EMD) algorithm that can be
connected through the Hilbert transform to a time–frequency
spectrum where the instantaneous frequency (IF) of each

of the components is obtained. Although EMD is signal–
dependent and intuitive, it is not optimal and it does not
consider orthogonal basis functions.

Locally a signal can be well–approximated as a sum of
chirps with polynomial instantaneous–frequencies. By de-
creasing the local support, linear chirps are sufficient to con-
sider. The symmetry of the envelopes of zero–mean linear
chirps and the matching of their extrema and zero–crossings
make them possible IMFs. In [2] we propose the discrete
linear chirp transform (DLCT) for local approximation of
non–stationary discrete signals using linear chirps. The linear
chirp parameters permits us to obtain the IF of each of the
components, just like the Hilbert spectrum does for each of
the IMF components. Because of its parametric approach, the
DLCT approach does not suffer from some of the drawbacks
of the EMD and it is completely analytic. Given the com-
monalities between the EMD and the DLCT it is appropriate
to compare their results in the demodulation of FM signals.
Using more sophisticated procedures such as the polynomial
Fourier transform [11] and the ensemble EMD [12] would
require higher computational cost and complexity.

The Hilbert transform applied to each IMF component
gives the global time–frequency distribution of the underly-
ing signal [3, 4]. The application of the Hilbert–Huang Trans-
form (HHT) to audio and speech signals have been presented
in [5, 6]. While in [7, 8, 9] the HHT is used to estimate the
IF of biomedical signals such as EEG and ECG. However,
the estimated IF obtained through the EMD is not clear be-
cause of the rough approximation of the IMFs. Given that the
DLCT provides a parametric representation of the signal, the
estimation of the IF of the components is improved. Here we
apply this method to estimate the IF of Frequency Modulated
signals which by definition is the message signal. Thus this
approach is considered as an FM demodulator which may be
used in software defined radio systems.
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2. FM DEMODULATION

A frequency modulated (FM) signal is the prototypical ex-
ample of a non–stationary signal as its frequency varies with
time depending on the message. For a message m(t) the FM
modulated signal is given as

f(t) = cos(!ct+ kf

Z t

0
m(⌧)d⌧) (1)

where !c is the carrier frequency and kf is the modulation
index. The instantaneous frequency of the FM signal is

IF (t) = !c + kfm(t)

or the derivative of the argument of the cosine. In general,
kfm(t) << !c and also the value of kf and the amplitude
of the message determine the bandwidth of the FM signal.
Wide–band FM is the more interesting and challenging case
which we consider here. Notice that if we are able to estimate
the instantaneous frequency of f(t) we would obtain the mes-
sage. But the message can also be obtained by computing the
derivative of the signal and using an envelope detector [10], a
procedure used in commercial AM.

This can be seen from the derivative of f(t) which gives

df(t)

dt

= �(!c + kfm(t)) sin(!ct+ �(t)) where

�(t) = kf

Z t

0
m(⌧)d⌧ (2)

an AM-FM signal, i.e., it has a time–varying amplitude mod-
ulating an FM signal. Since kfm(t) << !c to obtain the
time–varying amplitude we demodulate (2) by multiplying by
sin(!ct) given that !c is known to obtain

df(t)

dt

sin(!ct) = f1(t) + f2(t)

f1(t) = �0.5(!c + kfm(t)) cos(�(t))

f2(t) = 0.5(!c + kfm(t)) cos(2!ct+ �(t)) (3)

Thus demodulating the derivative of the FM signal sin(!ct)

we obtain components f1(t) and f2(t) with the same time–
varying amplitude. Each of these can then be processed either
with an envelope detector or Hilbert transform to obtain the
message. In the Hilbert transform method, we calculate the
analytic signal of f2(t) and then the message can be extracted
from the absolute part of the analytic signal. The condition
kfm(t) << !c makes the upper envelop be related to kfm(t)

from which we can obtain the message m(t). However, we
need to obtain the two components of the sine demodulated
signal. When !c and �(t) are not close, this can be done using
the EMD or the DLCT. However, whenever !c and �(t) are
close, the EMD method could fail while DLCT does not.

3. DISCRETE LINEAR CHIRP TRANSFORM

3.1. Chirps as IMFs

A non–stationary signal can be decomposed into a finite num-
ber of IMF functions with meaningful instantaneous frequen-
cies. We would like these IMF functions to be independent of
each other and to satisfy the following two conditions:

• The number of extrema and the number of zero cross-
ings must either equal or differ at most by one.

• The instantaneous mean of their envelope, defined by
the IMFs maxima and minima, must be zero.

A chirp function

c(t) = Ae

j�(t)
0  t  T (4)

where �(t) is a polynomial in t

�(t) =

1X

k=1

�kt
k

can be considered an IMF. Indeed, its envelope is symmetric
so that its instantaneous mean is zero, and by adjusting the
value of T the number of extrema and of zero crossings are
made to match.

Given the complexity of using higher order chirps, we
consider linear chirps with an appropriate support as IMFs.
A local representation — mandated by T — of a signal is
then

x(t) =

Z 1

�1

Z 1

�1
X(f,�)e

j(2⇡ft+�t2)
dfd�, 0  t  T (5)

or an infinite sum of linear chirps with constant magnitude
X(f,�), and instantaneous frequency (IF)

IFf,�(t) = 2⇡f + 2�t.

3.2. Discrete Linear Chirp Transform

For computer implementation, a discrete version of the chirp
representation given in (5) is needed. For x(n), a discrete–
time signal of finite support 0  n  N � 1, the following
discrete linear chirp transform (DLCT) and its inverse have
been proposed [2] :

X(k,m) =

N�1X

n=0

x(n) exp

✓
�j

2⇡

N

(mCn

2
+ kn)

◆
, (6)

0  k  N � 1, � L

2

 m  L

2

� 1

x(n) =

L/2�1X

m=�L/2

N�1X

k=0

X(k,m)

LN

exp

✓
j

2⇡

N

(mCn

2
+ kn)

◆

0  n  N � 1, C = 2⇤/L (7)
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To obtain a discrete transformation the chirp rate, that in a
continuous chirp has no bounds, i.e., �1 < � < 1, is now
bounded. That is, we consider a range [�⇤,⇤], 0 < ⇤ < 1,
and discretize these values to mC = 2⇤m/L, �L

2  m 
L
2 �1. The value of N is taken as the width of a window cho-
sen so that the matching of extrema and zero–crossing con-
dition for the chirps to be IMFs is satisfied. Notice that the
DLCT is a generalization of the discrete Fourier transform
(DFT), X(k, 0) is the DFT of x(n).

If for the signal x(n) we can identify from its DLCT
X(k,m) the number of components and the corresponding
chirp–rate and frequency parameters, we then have a linear–
chirp approximation of x(n). Indeed, using equation (7) we
obtain the following Parseval type of relation between the
energy in the two domains:

X

n,m

|xm(n)|2 =

X

m,k

|X(k,m)|2

N

2

It can then be shown that for each value of the discretized
chirp–rate 2⇤m/L, �L/2  m < (L/2)� 1 we have that

xm(n) =

N�1X

k=0

X(k,m)

N

exp

✓
j

2⇡

N

(Cmn

2
+ kn)

◆
(8)

equals x(n). That is, the inverse DLCT is the average over all
values of m: replacing X(k,m) from (5) in (6) gives

xm(n) =

N�1X

`=0

x(`)

N

exp

✓
j

2⇡

N

Cm(n

2 � `

2
)

◆

⇥
N�1X

k=0

exp

✓
j

2⇡

N

k(n� `)

◆

| {z }
N�(n�`)

= x(n).

And thus, we have that
X

n,m

|xm(n)|2 =

X

n

L|x(n)|2

As such, the energy concentration is indicated by the peak
values of |X(k,m)|2 as a function of k and m. Considering
the region in the joint chirp–rate frequency plane where these
peak values occur, we should find the values of the chirp–rates
and frequencies that can be used to approximate the given
signal locally as a sum of linear chirp components

x(n) =

PX

i=1

ai exp

✓
j

2⇡

N

(�in
2
+ kin) + j�i

◆
(9)

where ai, �i, ki, and �i are amplitude, chirp rate, frequency,
and phase of the ith linear chirp, respectively.

The determination of the range of chirp–rates and fre-
quencies where the energy of the signal is the most signifi-
cant is analogous to masking. Selecting the frequency band

𝛽ଵ 

𝛽ଶ 

𝛽 𝑡 

𝑓 
𝑓ଵ 𝑓ଵ 𝑓ଶ 𝑓ଶ 

𝛽ଵ 

𝛽ଶ 

Fig. 1. Joint chirp–rate � and frequency f masking in chirp–
rate frequency plane (left) and corresponding time–varying
mask in time–frequency plane (right).

[f1, f2] and the chirp–rate range [�1,�2] as in Fig. 1 one
can determine by the number of peaks the number of compo-
nents and for each the frequency and chirp–rate — thus obtain
a parametric representation of the signal components. This
equivalent to masking in the joint time–frequency plane using
a time–varying filter with the desired frequency band [f1, f2]

but a shape determined by the chirp–rate range [�1,�2]. See
Fig. 1.

4. COMPARISON OF EMD AND DLCT

The EMD is a technique that decomposes a non–stationary
signal into a small number of components, and it has been
proven to be useful in a wide range of applications. However,
in situations where the instantaneous frequencies are not well
separated in the time–frequency plane it does not perform
well. The DLCT on the other hand, providing a parametric
representation of the signal is more robust. To illustrate the
behavior of the two algorithms we consider two examples one
with simulated data and the other with real data.

To test the IF estimation, consider the addition of two si-
nusoidal chirps corrupted with additive Gaussian noise giving
a signal to noise ratio SNR= 5 dB:

x(n) = cos

⇣
⇡

10

n+

⇡

6400

n

2
+ 8 sin

⇣
⇡

200

n

⌘⌘

+cos

✓
2⇡

5

n+

0.18⇡

1024

n

2
+ 8 sin

⇣
⇡

50

n

⌘◆
.

Figure 2(a) depicts the signal x(n), while the actual IFs of the
two individual components are shown in Fig. 2(b). Figures
2(c) and (d) give the estimated IFs of x(n) using the DLCT
and the EMD decomposition algorithms, respectively. The
performance of the EMD as an IF estimator is very much af-
fected by the presence of the noise.

The performance of decomposition and representation of
speech signals using the EMD and the DLCT is explored. Our
experiment is conducted using a speech segment correspond-
ing to “among them are canvases by a young artist” sampled
at 16 kHz. The speech signal is divided into blocks of 218
msec to capture its local characteristics. The DLCT decom-
poses the speech segment into 5 components si(t) as shown in
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Fig. 2. Synthetic signal x(n) with additive noise (SNR=5dB):
(a) noiseless signal x(n); (b) IF of x(n) ; (c) estimated IF of
x(n) using DLCT; (d) estimated IF of x(n) using EMD.
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Fig. 3. Speech segment decomposition using DLCT: com-
ponents {si(t)}, i = 1, · · · , 5 (left) and their corresponding
spectra (right).

Fig. 3. The SNR for the reconstructed signal is 26.08 dB. No-
tice that each of the si(t) display the characteristics of IMFs
and that they do not overlap in frequency, as indicated by their
spectra.
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Fig. 4. Magnitude of the DLCT for one block of the segment
of speech. Peaks indicate 5 different linear chirps with the
corresponding chirp–rates and frequency parameters for each
indicated by the peak.

The decomposition includes the calculation of the DLCT
for each block. Figure 4 shows the two–dimensional plot of
the DLCT magnitude for one of the blocks. The proposed al-
gorithm follows the peaks displayed in the magnitude plots
and masks them in the frequency chirp–rate plane — this
method is thus a time–varying bank of filters.

For comparison, we decompose the same speech signal
using the EMD. The speech segment is windowed into blocks
of the same width as in the above DLCT experiment. The
EMD decomposes the speech signal also into 5 IMFs as
shown on the left in Fig. 5. However, the reconstructed signal
gives a SNR=18.21 dB not as good as the reconstructed sig-
nal from the DLCT method. Also the frequency spectrum of
each of the five components has overlapping bandwidths (see
Fig. 5 on the right) different from the spectral representation
obtained with the DLCT (see Fig. 3 on the right).
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Fig. 5. Speech decomposition using EMD: five IMFs (left)
and their corresponding spectra.
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Fig. 6. (a) Spectrogram of the FM modulated signal; (b) han-
del message; (c) demodulation with EMD using envelope de-
tector; (d) demodulation with DLCT using envelope detector;
(e) demodulation with EMD using Hilbert transform; (f) de-
modulation with DLCT using Hilbert transform.

5. SIMULATION OF DEMODULATION OF FM
SIGNAL

Finally, we conduct the experiment of demodulating an FM
signal. The spectrogram of the FM signal is shown in Fig.
6(a). The message given in Fig. 6(b) is a segment of MAT-
LAB’s handel signal. Figures 6(c) and (d) show the demodu-
lated signal using the envelope detector method after securing
the higher frequency component f1(t) by the EMD and the
DLCT. The SNR of the detected signal is 17.41 dB for the
EMD case while it is 18.81 dB for the DLCT case. Now, if
we demodulate the signal with the Hilbert transform method,
then we obtain the message signal with SNR 14.94 dB for the
EMD case and 17.44 dB for the DLCT case as given in Figs.
6(e) and (f).

6. CONCLUSION

In this paper, we compare the DLCT and the EMD methods
for the demodulation of FM signals. Different from the EMD,
the basis used in the DLCT are orthogonal and optimal in a
mean–square sense. The DLCT uses linear chirps as the IMFs
and provides a parametric estimation of the instantaneous fre-
quency of the signal components, which is not affected by the
closeness of the frequency of the components. The DLCT
provides a joint chirp–rate instantaneous–frequency masking
— or a time–varying mask in the time–frequency domain–

that permits us to separate the signal according to the mag-
nitude of the DLCT. The advantage of the DLCT over the
EMD is illustrated using FM demodulation or instantaneous–
frequency estimation application.
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