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ABSTRACT

In a recent study a novel classification algoritbatled the
Sparse Classifier (SC) assumes that if a test sabglbngs
to class k then it can be approximately represebted
linear combination of the training samples beloggio k.
Good face recognition results were obtained by $t
method. This paper proposes two generalizationghef
aforesaid assumption. The first generalization rassuthat
the test sample raised to a power can be approadhiat a
linear combination of the training samples of tlwdaiss

raised to the same powers. The second generatizati

assumes that the test samples raised to a powebe&an
approximately represented by a non-linear comtonatf
the training samples raised to the same power. firke
generalization requires solving a group-sparsenopation
problem with linear constraints while the seconsuaption
requires solving a group-sparse optimization pnobigith
non-linear constraints. We propose two greedy stbval
algorithms to solve the said problems. The claeysfi
developed in this work are used for single-imagegeson
face recognition. We find that our first generdiiza leads
to an improvement of 2-3% in recognition accuraegrd&SC,
while the second generalization improves the reitiogn
accuracy even further; about 6-7% better than ihs f
generalization.

Index Terms—Greedy Algorithms, Classification, Face
Recognition

1. INTRODUCTION

A recent work in face recognition [1] proposed mple yet
novel assumption: A test sample belonging to aiqadar
class can be approximately expressed as a
combination of the training samples of that clddss led to
the Sparse Classification (SC) approach. With isple
assumption, very good recognition results wereinbthon
the Extended Yale and the AR face recognition deteb
[1].

The classification assumption of [1] is restrictiv&e
propose two generalizations. The first generalwati
assumption relaxes the condition that the test kEasipuld
be approximated by linear combination of the tragni
samples of that class. We assume that the testesungised

to a certain powerp,,i J{L,...,M} can be approximated by a

linear combination of the training samples raisethe same
power. This is a generalization of the previousuaggion,
where only p=1 is considered. The first generalirat
assumption leads to a group sparse optimizatiotl@no
with linear constraints. The second generalization
assumption is more complex. It assumes that thesaéesple
raised to a certain powep,,i 0{L,...,M}can be expressed

approximately as a non-linear combination of thaning
samples raised to the same power. This also leaalgtoup
Sharse optimization problem but with non-linearstomints.

We are not aware of any work that addresses the
problem of group-sparse optimization with non-linea
constraints. Hence there is no algorithm to solve i
efficiently. In this work, we propose an efficiegteedy
algorithm to solve the said problem.

In this work we are interested in the problem afefa
recognition when only a single training image ofleperson
is available. More commonly it is referred to as #ingle-
image-per-person recognition problem. A survey lo t
problem [2] shows that most of previous studiethis field
employ the Nearest Neigbhour (NN) for classificatio
Studies like [3-9] differ from each other in thd@ature
extraction method, but all use the same NN clasgitn.
Keeping the feature extraction the same, but byging the
classifier we will show that significant improventenin
recognition results can be achieved.

The rest of the paper will be organized into selvera
sections. Section 2, describes the Sparse Clad8ific
method [1]. In section 3, the proposed generabtimatiand
the optimization tools needed to implement them are
discussed. Section 4 discusses the experimentaltses

Iinegljnally in section 5, discussions and future scopevork

are discussed.
2. LITERATURE REVIEW: SPARSE CLASSIFIER

The sparse classifier (SC) assumes that the toppgamples
of a particular class approximately form a lineasib for a
new test sample belonging to the same class. TSuwergrion
can be expressed formally as:

Victest = B Mia P A Mot Ay Vi, T€

1)
where y; are the training samples ands the approximation
error.



Equation (1) expresses the assumption in term$ief t

training samples of a single (correct) class. Algely, it
can be expressed in terms of all the training sespl the
form:

Vit =Va+E

)
whereV =[vi |...[Vaa |l Mcq Ve Ve n |-V g
and a =[ay;..01, - Oy 1Oy -Oc 1-9c . |-

According to the assumption, the solution to theeise
problem (2) should be sparse, i.e. only those woefits in

the vectora should be non-zeroes which correspond to the!

correct class of the test sample. The rest sholilbea
zeroes. ldeally a sparse solution is achieved byingpthe
following optimization problem,

min [|la [} suchthat W} -Va <|p 3)

However, solving this is an NP hard problem. Factical

problems it can only be directly solved but only Vg =Vpa, &y, 0i=1:M

The simple assumption in (1) says that a test sacgt
be approximately expressed as a linear combinatfomhe
training samples from the correct class. This snaplistic
assumption. We argue that this approximation mdgt far
several powers p...pv) such that

- P
VPheg =05 VP 1t A VP HE
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where y indicates that each coefficient of the sample v is
raised to the power p.

We can write this expression (4) in terms of ak th
training samples of the class

(%)

approximately by greedy algorithms or via CONVEXwhereV, is a matrix formed by stacking the training

approximations of the NP harg-dorm. There are many

greedy and optimization based solvers to solve (3).

samples raised to the power pi column-wise .q,in'd; the

Onceua is solved the classification proceeds as follows: error.

SC (Sparse Classifier) Algorithm [1]

1. Find a sparse solution to inverse problem (2).
2. For each class i repeat the following two steps:

Thus (5) is a generalization of (2), where theelatt
forms a special case of the former where only glsipower
(p =) is considered.

To design a classifier based on our generalized

a. Find a representative sample for each class byssumption, the first task will be to organize system of
a linear combination of the training samplesequations (4) and (5) in matrix-vector form:

belonging to that class by the
0 Vdes | [Vo, 0 . 07[a, ] [e
equation/q, (i) :Zai,jvi’j V&ﬂ 0 V, .. 0]a, N Ep, ©)
j=1
. 0 O 0
b. Find the error between the reconstructed
sample and the given test sample by| v, 0 0 o Vo, 1% | L&
error (Vieg »1) =l Vic test ~Vrep(iy b - This can be expressed as
3. Once the error for every class is obtained, chdbgse v=Va-+e¢ (7)
class having the minimum error as the class ofjihen Y Py 7
where Victest = [Victestr -+ Vicrest 15

test sample.
3. PROPOSED GENERALIZATIONS

The full generalization over SC is achieved in steps.
In the first step, it is assumed that the test $amgised to
certain powers can be approximately representea Imear
combination of training samples of the correct slassed to
the same power (sub-section 3.1). In the secom] #tés
assumed that the test sample raised to certainrpamae be
approximated by a non-linear combination of thentray
samples of the correct class raised to the samemp(sub-
section 3.2).

3.1 GENERALIZED LINEAR SPARSE CLASSIFIER

V =BlockDiag[V, ,...V, 1 and a =[a,...a, |

By definition (4) the structure of the coefficiar@ctora
demands group sparsity, i.e. the indices in eacthef,'s
should be non-zeroes for the correct class ofabesample.
The groups are formed by the class of indices, i.e.

a :[apl-l’ apzvl'"apm vl"'aplc ’apzc "apM c ]

a ac

wherea, ; = [a'pj i

pj i pjin]'
With this notation, we frame the ideal group sggrsi
promoting optimization problem,

min|la |}, suchthat|ly -Va ,He (8)
a

Solving the optimization problem (8) is NP hard.efé
are two approaches to solve it. The first one islitectly
solve it using greedy sub-optimal algorithms. Tleeond



one is to solve (8) by approximating the NP hargnlorm

by a convex surrogate. The greedy algorithms atefahan b-norm (widely used for Gaussian Noise).

convex optimization based algorithms. Thereforethis Our algorithm is based on ideas similar to [11] fut
work we use a very fast algorithm called the Stasew i5iored for solving (14).

Block Orthogonal Matching Pursuit (StBOMP) [10] to
recover a group sparse solution. Greedy Non Linear Sparse Solution

Oncea is solved, we base our classification on a S"ghﬁnitialization
modification of the SC method:

GLSC (Generalized Linear Sparse Classifier) Aldponit

where E(a,V, 4 ) denotes an error measure not necessarily

- The sparse vector to be estimatesd
initialized to zerog =0. The residual is initialized to the

test sample,(? =v . The set of chosen indices is

1. Solve the optimization problem expressed in (fegit emptyl® =[].
b}' 0pt|m|za'§|,on or by.greedy algorithm. .. lteration — Continue the following steps until th@m of the
2. Find those i's for whichdj|p > 0. For those classes (i) residual is less than a predefined value.
satisfying the condition in step 2, repeat thecofwlhg
two steps:
a. Obtain the representative a sample for each d
class by a linear combination of the training 9=— Vs — f Va)|p at a®™. This is basically a

samples in that class via the equation da. ) ]

n generalization of the OMP algorithm [22] where the
Vrep(i):zai,jvi,j .

j=1

correlations are the negative gradient of error
term||Vy g —Va |fevaluated at the current coefficient
b. Find the error between the reconstructed agtimate.
sample and the given test sample by> The group having index with highest gradient
€rror (Vies s 1) =I[Vic test ~Vrepiy 1b magnitude is choserl,={group(i): max |g()) [}. This
3. Once the error for every class is obtained, chdbse step is also similar to OMP, where the index of the
class having the minimum error as the class ofjthen highest correlation is chosen.
test sample. 3. The current set of indices is updated by adding the

newly chosen indices® =[L™ |].
4. The values of the signal at the chosen indices are

1. The first step computes the gradient of the ertdha
current coefficient estimate, i.e.

3.2 GENERALIZED
CLASSIFIER

NON-LINEAR SPARSE

In the second generalization step it is assumetdtitiea
test sample raised to certain powers can be appeately
represented by a non-linear combination of thenitngi
samples raised to the same power, i.e. we are pir@pan
assumption of the form
v=f\Va)+ee~N(0,0) 9
where
Victest = [ViPhests -+ Viches 13V = BlockDiag[V, ...V, 1 and

a=[ay,..ap 1

This assumption opens a wide and powerful variéty o

possibilities in terms of modeling the classifioatiproblem
since it breaks the restrictions imposed by lirtgaiiihe full

generalized model comes at the cost of computationg[

complexity. The final form of the classificationsasnption
leads to an optimization problem of the form:
min|la [, suchthatjly - f Ve 7 (20)

This is an NP hard problem to solve. Recently &dye
algorithm for non-linear sparse system identificativas
proposed in [11]. It was meant for approximatingrsp
optimization problems of the form
min [|a [y subject t& A Vy ey (11)

computed by least squares optimization
X=min ||V eq = f & CLY ) [b. This is a problem of
non-linear least squares and does not have a closad

solution and needs to be solved iteratively.
The coefficient vector and the residual are updated

a(lW)=xandrV =v, o - f Va ).

This algorithm can be applied for a wide classurfctions,
the only restriction being (Va) =0,at a =0.

The non-linear sparse estimation is the core bettiad

classification algorithm. Based on this estimatiore
propose the classification algorithm as follows:

GNSC (Generalized Non-linear Sparse Classifierp#itgm

Solve the optimization problem expressed in (14)Hzy
greedy algorithm.
Find those i's for whichd]|L > O.
For those classes (i) satisfying the conditiontap<2,
repeat the following two steps:
a. Obtain the representative a sample for each
class by a linear combination of the training



samples in that

n
Vip ()= T Qa4 ) -
j=1

b. Find the error between the
sample and the given test

error (Vies »1) =V test ~Vren(iy Ik
4. Once the error for every class is obtained, chdhee

class having the minimum error as the class ofjihen
test sample.

4. EXPERIMENTAL RESULTS

The proposed classification algorithms are appbedthe

class via the equationbut saw that there was no gain in recognition amuvith

such fine sampling.
The Generalized Non-linear Sparse Classifier ofters
wide range of modeling functions to be used for

reconstructedclassification. It is not possible to test all tléferent
sample byfunctional forms and decide the best one for oobfam. In

this work, we tested the following functions:
f,(A X) = (AX)? + Ax
Fa(AX) = (A2 + (AX)? + Ax
f3(AX) = (A2 + Ax

Of these we found that the third function gives thest
recognition results. The results are shown in table

Table 1. Variation in Recognition Accuracy

problem of recognizing faces from a single trainimgge of
each person. We follow a similar experimental eatiun
methodology as in [6]. Our evaluation is perfornoegr the

FERET database which consists of 14501 images 09 12

subjects. We only use the 3817 images (of 1200ests)j

that have the eye-position available, as we arerdsted
only in face recognition and not face detectione Tdye

positions are required a priori for carrying fottte standard

preprocessing steps from the FERET protocol.

Of the 1200 subjects, 226 subjects have 3 images

Feature NN SC GLSC GNSC
Extraction

(PC?A 0.4¢ 0.E 0.54 0.58
SPC# 0.51 0.5z 0.5€ 0.59
Eigenface | 0.54 0.55 0.57 0.64
Selectiol

SPCA-4 0.52 0.5€ 0.5¢ 0.64
sampled | 0.5 0.51 0.54 0.60
ELDA

subject. In [6], it is suggested that this set keduas the
generic gallery. These 678 images are also usetlifing

our classifier. The training and testing dataseé¢sfarmed

from 1703 images which consist of at least 4 images
subject for another 256 persons. The training eéatés
formed by randomly selecting 256 images (one imiage
each person) for the 256 people; the remaining 1ddges
form the testing set.

The following points can be noted:

* The Sparse Classifier (SC) is always better than th

Nearest Neighbour (2-3% improvement).

The GLSC gives better results than the NN and tbe S

It shows about 2-3% improvement over the SC.

The GNSC gives considerably better results compared
to the others. It shows about 6-7% improvement in

The objective of this work is to show how the recognition accuracy over the GLSC.

classification accuracy is
classification from simple Nearest Neighbour
classification to more sophisticated techniquee like SC

and its proposed generalizations. Therefore we db n

introduce any novelty into the feature extractiechhiques.
The feature selection methods used in this work{RE&¥A
[4], SPCA [5], Eigenface Selection [6], SPCA+ [Shca
sampled FLDA [8].

Owing to limitations in space we can not tabul&suits
for different number of Eigenfaces/Fisherfaces ard 40
feature points (Eigenfaces/Fisherfaces). In Tableelshow
how the classification accuracy improves for adixeimber
of feature points when the classification algorittgats
progressively more sophisticated.

The NN and the SC are non-parametric classifiets. B

certain parameters need to be decided for our gempo
classifiers. For the Generalized Linear Sparse difiess
(tables 3 and 4), we found that the values of indietween
0.1 and 2 give good recognition accuracy. In thiskwwe
considered the values of p — 0.125, 0.25, 0.5,dLZanVe
tried sampling the range uniformly (0.1 to 2 inpsteof 0.1)

improved by changing the
(NN)

5.CONCLUSION

This work proposes major generalization of the spar
classification framework. The proposed classifievere
tested on the real-life problem of identifying face people
from a single training image. The results show majo
improvement over previous Nearest Neighbour
methods.

This paper is exploratory in nature. The clasdiiica
algorithms are highly generalized and flexible. Bubrder
to make good use of these classifiers several ignestiust
be answered — The first being the choice on theegbf p
for other classification problems (not necessarfiice
recognition). In our case, we found the values ralipwiThe
second question is even more important — how tosdohe
non-linear classification model. Again in this case tried
several simple models and found the one that sgitthe
best.

based
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