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ABSTRACT 

 
In this paper we propose a non-convex method for rank 
aware row-sparse Multiple Measurement Vector (MMV) 
recovery. Recent studies in row-sparse MMV recovery 
observed that better results can be achieved when the 
recovery algorithm takes into account the fact that the MMV 
matrix to be recovered is low-rank. The proposed non-
convex problem requires minimizing the sum of l2,p-norm 
and Schatten-q norm subject to data constraints. We derive 
an algorithm to solve the said problem based on the FOCally 
Under-determined System Solver (FOCUSS) approach. We 
compare our proposed method with state-of-the-art methods 
in rank aware and rank blind row-sparse MMV recovery. 
Our method always yields the best results in terms of 
probability of recovery. 
 

Index Terms— sparse recovery, low-rank matrix 
recovery, non-convex algorithm 
 

1. INTRODUCTION 
 
In this paper, we propose an algorithm for row-sparse 
Multiple Measurement Vector (MMV) recovery taking into 
account the fact that the MMV matrix to be recovered is 
low-rank. Such problems arise in a variety of biomedical 
engineering problems like Magnetic Resonance Imaging [1] 
and EEG signal reconstruction [2]. Until recently most 
theoretical work on MMV recovery have only exploited the 
row-sparsity of the MMV matrix. But in recent papers [3, 4] 
it was shown that better recovery can be achieved when the 
low-rank property is also considered.  

Generally in Compressed Sensing (CS), we are 
interested in solving an under-determined system of linear 
equations where the solution (x) is known to be sparse. 

1 1,  r r n ny A x r n× × ×= <     (1)   

Here, y is the observation vector, A is the measurement 
matrix and x is the unknown vector to be solved. 
In the row-sparse MMV recovery, the problem is the 
following, 

r N r n n NY A X× × ×=     (2) 

where 1 | ... |r N NY y y× =   and 1 | ... |n M NX x x× =    . 

In (2) all the xi’s vectors have the same support, i.e., they 
have non-zero elements at the same locations. Therefore, the 
MMV matrix X is row-sparse. But at the same time, since 
only a few of the rows in X are non-zeroes, the matrix is 
low-rank as well. 

Previous studies in solving (2) have only used the row-
sparsity information of X [5-9]. Their solution was based on 
the following optimization, 

,
min  subject to 

p

m pX
X Y AX=

 
  (3) 

where 
,

1

n pp j

m p m
j

X X →

=

=∑ ( jX → is the jth row of X). 

In [6], the values m=2 and p≤1 were proposed. Since 
values of p<1, make the problem non-convex, m=2 and p=1 
are used in [5]. The choice of such values for the norms can 
be understood intuitively. The l2-norm over every row 
( jX → ) enforces non-zero values on all elements of the row 

vector whereas the summation over the l2-norm (
2

1

n
j

j

X →

=
∑ ) 

of the rows enforces row-sparsity, i.e. the selection of few 
rows. 

There are several algorithms to solve (3) [5-9]. These 
algorithms only rely on the group-sparsity of X and do not 
consider the fact that the solution X is low-rank as well. 
Recent studies [3, 4] showed that, better results can be 
obtained when the low-rank property is used along with the 
row-sparsity constraints while solving (2). In [3], a greedy 
algorithm called Order Recursive Matching Pursuit (ORMP) 
was proposed to solve (2); in [4] an optimization based 
algorithm was suggested based on the following 
optimization, 

2,1 *
min +  subject to 

X
X X Y AXη =    (4) 

where 
*

X denotes the convex nuclear norm of the matrix X 

and is defined as the sum of its singular values. Instead of 
minimizing the rank of a matrix, the convex nuclear norm is 
used in (4), because minimizing the rank of matrix is an NP 
hard problem [10, 11].  This is similar to CS where the 
convex l1-norm is used instead of the NP hard l0-norm (since 
the l1-norm is the closest convex surrogate to the l0-norm). 

Studies in sparse recovery [12, 13] and low-rank matrix 
recovery [14-16] have shown that, when non-convex 
surrogates of the NP hard l0-norm and rank of matrix are 
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employed instead of their convex counterparts (i.e. lp-norm 
instead of l1-norm for sparsity and Schatten-q norm instead 
of nuclear norm for rank-deficiency, 0<p,q≤1), better 
reconstruction results can be achieved.  

In this work, we address the problem of recovering row-
sparse MMV matrix in a rank-aware fashion. Our approach 
however is motivated by findings in non-convex sparse 
recovery and non-convex low-rank matrix recovery. 
Therefore instead of (4), we propose to solve the following 
optimization problem, 

2,
min +  subject to 

q

p q

p SX
X X Y AXη =   (8) 

where 
qS

X denotes the Schatten-q norm of the matrix. 

To solve (8) we will employ the FOCally Under-
determined System Solver (FOCUSS) approach. Previous 
this approach has been successfully used for row-sparse 
MMV recovery [6] and general low-rank matrix recovery 
[15]. In the next section, we derive the algorithm for rank-
aware row-sparse MMV recovery. Section 3, will present the 
results for experimental evaluation. The conclusions of this 
work are discussed in section 4. 
 

2. DERIVATION OF ALGORITHM 
 
The problem is to solve (8). As mentioned before, we will 
use the FOCUSS approach to solve it. This approach has 
been successfully used to solve problems of row-sparse 
MMV recovery [6] and general low-rank matrix recovery 
[15] but has not been attempted on problems of rank aware 
row-sparse MMV recovery (8). The rank aware row-sparse 
MMV problem is however studied in [3, 4]. An algorithm is 
proposed in [4] to solve this problem using a convex 
formulation (4). This work proposes to solve (8) with a non-
convex formulation. 

To solve (8), the unconstrained Lagrangian expression 
is considered where we replace the Schatten-q norm by the 
equivalent Ky-Fan norm, 

/ 2

2,
( , ) ( ) ( )

p T q T

p
L X X Tr X X Y AXλ η λ= + + −  (9) 

where λ is the vector of Lagrangian multipliers. 
The Karush-Kuhn-Tucker (KKT) conditions for an 

extremum to exist are the following normal equations, 
/ 2 1

2

1
2

( , )

1
                ( ) 0

2

p
j

X

q
T T

L X p X X

q XX X A

λ

η λ

−
→

−

∇ = ⋅

+ + =
  

(10a) 

( , ) 0L X AX yλ λ∇ = − =     (10b) 

In (10a)
/ 2 1

2

p
jX X

−
→ ⋅ implies that the jth row of X (Xj→) is 

multiplied by 
/2 1

2

pjX
−→

. In a more compact manner (10a) 

can be expressed as, 
0TDX A λ+ =      (11) 

where 
/ 2 1 /2 1

2

1
( ) ( )

2

pj T qD pDiag X q XXη
−→ −= + ; the Diag 

operation means that the values 
/ 2 1

2

pjX
−→ are placed as 

elements of a diagonal matrix. 
Solving, for X in (11) we get, 

1 TX D A λ−= −      (12) 
D is a block diagonal matrix with positive semi-definite 
blocks along the diagonal. Since D is positive semi-definite, 
the solution is not numerically stable. Such a problem was 
encountered while using FOCUSS for sparse signal recovery 
in Compressed Sensing [13]. To reach a stable solution, D 
must be positive definite. Following previous studies in lp-
norm minimization [13] and Schatten-p norm minimization 
[16], we ensure D is positive definite by adding a small term 
along the diagonal, i.e. we replace, 
D D Iε→ +  
Here ε is a small constant that ensures D is positive definite. 
This also guarantees that its inverse is positive definite.  

Solving λ from (10b) and (11) we get, 
1 1( )TAD A Yλ − −= −     (13) 

Substituting the value of λ back in (16), we get, 
1 1 1( )T TX D A AD A Y− − −=    (14) 

In order to efficiently compute X in each iteration, we re-
write (14) as, 

1,  where ( ) (( )( ) )T TX RX X AR AR AR Y−= =ɶ ɶ  (15) 

Here R is the Cholesky decomposition of D-1. The 
decomposition exists since D-1 is a positive definite matrix. 
The reason, we expressed (14) in the form (15) is because 

Xɶ can be solved very efficiently using the LSQR algorithm 
[17]. The problem (8) is solved iteratively. In each iteration 
k, the matrix Dk is computed based on the value of X from 
the previous value (Xk-1); the value of Xk is updated by 
solving the least squares problem. The algorithm is 
concisely expressed as follows: 

Intitialize: 1
0 ( )T TX A AA Y−=  which is a least squares 

solution; define ε 
Repeat until stopping criterion is met: 
Compute: 

/2 1 /2 1
1 1 12

( ) ( )
pj T q

k k k kD pDiag X q X X Iη ε
−→ −

− − −= + + and 

1T
k k kR R D−= . 

Update: 1 ( ) (( )( ) )T T
k k k kX AR AR AR y−=ɶ and k kX RX= ɶ . 

Decrease: /10ε ε=  iff 1 2k kX X tol−− ≤   

There are two stopping criteria. The first one is a limit 
on the maximum number of iterations. The second is the 
change in the value of the objective function in subsequent 
iterations; if the change is nominal, the iterations stop; it 
assumes that the solution has reached a local minimum with 
a tolerance (tol). The update step of the algorithm is solved 
by LSQR. The LSQR method runs for 20 iterations. The 
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value of ε is initialized as 1. The tolerance level for deciding 
the decrease of ε is fixed at 10-3.  

 
2.1. Iterative Re-weighted Least Squares 

 
In the past the Iterative Reweighted Least Squares 

(IRLS) approach was used for recovering sparse signals 
from under-sampled measurements [11]. This approach is 
closely related to the FOCUSS. Similarly a method for low-
rank matrix recovery was developed using the IRLS method 
[14]. In this sub-section, we will discuss how a solution for 
(8) can be alternatively derived based the IRLS approach. 

The focus of this paper is on solving the combined l2,p-
norm and Schatten-q norm minimization problem (8). 

2,
min +  subject to 

q

p q

p SX
X X Y AXη =  

Above, we have derived a FOCUSS based algorithm solve 
it. In this sub-section, we will propose an alternate solution 

based on IRLS. It can be shown that 
2

12, 2

p

p
X W x=

 
and 

2

2 2q

q

S
X W x=  where, 

1 /2

1 2
( )

pjW Diag X Iε
−→= +

 
and 

1 / 2
2 ( )T qW XX Iε−= + . Using these substitutions, (8) is 

expressed as, 
2 2

1 22 2
min +  subject to 

X
W X W X Y AXη =   (16) 

Alternatively, 
2

1

2 2

min  subject to 
X

W
x Y AX

Wη
 

=  
 

  (17) 

Here 
1

2

W

Wη
 
  
 

implies that the matrices are vertically 

concatenated. 
This has a closed form solution. However, it can be 

solved more efficiently using Conjugate Gradient. The 
values of W1 and W2 are updated at each iteration based on 
the values of X from the previous iteration. The IRLS 
algorithm can be concisely represented as following: 

Initialize: 
2

0 2
min

X
X Y AX= −  

At iteration k (repeat until convergence) 
1 /2

1 2
( )

pj
kW Diag X Iε

−→= +
 
and 1 /2

2 ( )T q
k kW X X Iε−= +  

2

1

2 2

min  subject to k
X

W
X x Y AX

Wη
 

= =  
   

/10ε ε=  iff 1 2k kX X tol−− ≤  

The IRLS based algorithm is similar to our previous 
FOCUSS based algorithm. The least squares problem is 
solved by LSQR. Also the stopping criteria and the 
thresholds are the same. 

 

3. EXPERIMENTAL RESULTS 
 
The experimental methodology followed here is based on [1, 
3, 6]. The columns of matrix A are drawn from a Normal 
distribution and are normalized to have unit norms. The size 
of A is 32 X 256. Four sets of experiments are carried out; 
the number of measurements vectors in X (N) are 1, 4, 8 and 
16 for the four sets. The number of non-zero rows in X is 
varied between 1 and 32 in steps of 1. The non-zero entries 
in X are drawn from a Normal distribution. 

We compare our proposed non-convex rank aware 
(non-cvx RA) method with three existing methods: 
1. Rank Aware Order Recursive Matching Pursuit (RA-

ORMP) [3]. 
2. Convex formulation for rank-aware row-sparse MMV 

recovery (4) (Cvx RA) [4]. 
3. Convex formulation for (rank-blind) row-sparse MMV 

recovery (3) (Cvx RB) [8]. 
Our method requires three values to be specified – the 

values p and q in the l2,p-norm and Schatten-q norms and the 
value of η that controls the relative importance of the two 
norms. We found that the values p=0.8 and q=0.8 yield the 
best results. However, the variation in the results for values 
of p and q varying between 0.6 and 1 is only slight. The 
value of η is fixed at 0.1; this value was found to give good 
results always. 

For the following graphs, a recovery is considered 
successful if the normalized mean squared error between the 
recovered signal and the ground-truth is less than a certain 
threshold (10-3 in this case). The probability of recovery is 
defined as the number of successful recoveries divided by 
the total number of trials for each configuration (1000 in this 
case). 

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Fig. 1. Comparison of Probability of Recovery. (a) For one 
measurement vector, (b) for 4 measurement vectors, (c) for 8 
measurement vectors and (d) for 16 measurement vectors. 

 

Figure 1, gives the comparative probability of 
recoveries from various algorithm for different number of 
measurement vectors. The probability of recovery from RA-
ORMP is almost the same as reported in [3]. The following 
conclusions can be drawn: 
1. Our proposed non-convex rank aware recovery method 

always yields the best probability of recovery. 
2. For all methods, the probability of recovery increases as 

the number of measurement vectors increases. This 
observation has been made in previous studies as well 
[3, 5, 8]. 
The improvement in probability of recovery is evident 

from Fig. 1. In Fig. 1a (N=1), at a sparsity of 10, the 
probability of recovery from our method is 0.78 whereas the 
probability of recovery from the convex formulation is 0.57 
and from RA-ORMP is 0.32. Similar observations can be 
made from the other graphs as well (Fig. 1b-d). 

 
4. CONCLUSION 

 
In row-sparse MMV recovery, the unknown vectors to be 
reconstructed have a common support; therefore when they 
are stacked as columns of the MMV matrix, the resulting 
MMV matrix is row-sparse. Until recently, this problem was 
solved by taking into account the row-sparsity of the 
solution. However such an MMV matrix is low-rank as well. 
Recent studies [3, 4] showed that when the information 
about the MMV matrix’s low rank property is exploited 
along with row-sparsity, the recovery results improve. In [3] 
a greedy algorithm called Rank aware Order Recursive 
Matching Pursuit (RA-ORMP) is proposed to solve the row-
sparse MMV recovery problem in a rank aware fashion. In 
[4] a convex optimization based method is proposed for 
solving this problem. This method minimizes the sum of the 
l2,1-norm (promoting row-sparsity) and the Nuclear norm 
(promoting rank deficiency) subject to the data constraints 
is. 

Following studies in non-convex methods for sparse and 
low-rank recovery we here propose a non-convex 
optimization problem that minimizes the sum of thr l2,p-norm 
and the Schatten-q norm subject to data constraints. We 
derive an algorithm to solve it based on the FOCUSS 
approach. We compare our method against state-of-the-art 
methods in rank aware and rank blind row-sparse MMV 
recovery. Experimental validation shows that our proposed 
method always yields better results. 
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