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ABSTRACT In (2) all thex’s vectors have the same support, i.e., they
have non-zero elements at the same locations. fonere¢he

In this paper we propose a non-convex method fak ra MMV matrix X is row-sparse. But at the same time, since
aware row-sparse Multiple Measurement Vector (MMV)only a few of the rows irX are non-zeroes, the matrix is
recovery. Recent studies in row-sparse MMV recoveryow-rank as well.
observed that better results can be achieved when t Previous studies in solving (2) have only usedrtve-
recovery algorithm takes into account the fact thatMMV  sparsity information oK [5-9]. Their solution was based on
matrix to be recovered is low-rank. The proposea-no the following optimization,
convex problem requires minimizing the sumlgfnorm min||X||p subject toY = AX 3)
and Schatten-q norm subject to data constraintsd@viee X mp
an algorithm to solve the said problem based orr@®€ally
Under-determined System Solver (FOCUSS) approaah.
compare our proposed method with state-of-the-athads
in rank aware and rank blind row-sparse MMV recgver
Our method always vyields the best results in tewhs
probability of recovery.

here|X[? = S[x[° X1~ is thej" row of X).
eIl =S e o

In [6], the valuesm=2 and p<1 were proposed. Since
values of p<1, make the problem non-conwex2 andp=1
are used in [5]. The choice of such values fornbens can
be understood intuitively. Thé,-norm over every row

Index Terms— sparse recovery, low-rank matrix (X'~ enforces non-zero values on all elements of ¢ve r

recovery, non-convex algorithm vector whereas the summation over lgagorm (ZHX"” ||2)
j=1
1. INTRODUCTION of the rows enforces row-sparsity, i.e. the sebtectf few
rows.
In this paper, we propose an algorithm for row-spar There are several algorithms to solve (3) [5-9]e§éh

Multiple Measurement Vector (MMV) recovery takingtd  algorithms only rely on the group-sparsity X%fand do not
account the fact that the MMV matrix to be recodei® consider the fact that the solutiofiis low-rank as well.
low-rank. Such problems arise in a variety of bidinal Recent studies [3, 4] showed that, better results ke
engineering problems like Magnetic Resonance Intaffih  obtained when the low-rank property is used aloith the
and EEG signal reconstruction [2]. Until recentlyosh row-sparsity constraints while solving (2). In [3],greedy
theoretical work on MMV recovery have only explaitthe  algorithm called Order Recursive Matching PursORMP)
row-sparsity of the MMV matrix. But in recent papg8, 4] was proposed to solve (2); in [4] an optimizatioasdd
it was shown that better recovery can be achieveenwhe algorithm was suggested based on the following

low-rank property is also considered. optimization,
Generally in Compressed Sensing (CS), we arQnin||X||21+/7||X||* subject tof = AX (4)
interested in solving an under-determined systerinefr X '
equations where the solutiox) §s known to be sparse. where | X|. denotes the convex nuclear norm of the matrix
Vst = A Xy <N (1) and is defined as the sum of its singular valuestebd of
Here, y is the observation vectoA is the measurement Minimizing the rank of a matrix, the convex nuclearm is
matrix andx is the unknown vector to be solved. used in (4), because minimizing the rank of maian NP
In the row-sparse MMV recovery, the problem is thehard problem [10, 11]. This is similar to CS whehe
following, convexll-nqrm is used instead of the NP h&rthorm (since
Yoen = A X ) thell-nor_m is the closest convex surrogate toI@hmrm)._
Studies in sparse recovery [12, 13] and low-rankrimna
where Y. =[ vy |...lyn Jand Xpan =[% |... % ]- recovery [14-16] have shown that, when non-convex

surrogates of the NP hatgtnorm and rank of matrix are



employed instead of their convex counterparts [j-eorm
instead ofi;-norm for sparsity and Schatten-q norm instea
of nuclear norm for rank-deficiency, 0<gl), better
reconstruction results can be achieved.

In this work, we address the problem of recoverng-
sparse MMV matrix in a rank-aware fashion. Our apgh
however is motivated by findings in non-convex spar
recovery and non-convex low-rank matrix
Therefore instead of (4), we propose to solve tlewing
optimization problem,

mxin||X||§p +/7||X||gq subject tof = AX (8)

where ||X||Sq denotes the Schatten-q norm of the matrix.

To solve (8) we will employ the FOCally Under-
determined System Solver (FOCUSS) approach. Prgvio
this approach has been successfully used for remsep
MMV recovery [6] and general low-rank matrix recoye
[15]. In the next section, we derive the algoritfon rank-
aware row-sparse MMV recovery. Section 3, will grgsthe
results for experimental evaluation. The conclusiofthis
work are discussed in section 4.

2. DERIVATION OF ALGORITHM

The problem is to solve (8). As mentioned before, will
use the FOCUSS approach to solve it. This apprdesh
been successfully used to solve problems of rowsspa
MMV recovery [6] and general low-rank matrix recoyve
[15] but has not been attempted on problems of eamkre
row-sparse MMV recovery (8). The rank aware rowrspa
MMV problem is however studied in [3, 4]. An algibrin is
proposed in [4] to solve this problem using a conve
formulation (4). This work proposes to solve (8jhwa non-
convex formulation.

To solve (8), the unconstrained Lagrangian expoessi
is considered where we replace the Schatten-q hgrthe
equivalent Ky-Fan norm,

gvhere D = pDiag("X"”||§/2_1)+%/7q(XXT)q’2'1; the Diag

. ; /2
operation means that the valu#ss(“":2 “are placed as

elements of a diagonal matrix.
Solving, forXin (11) we get,

X =-DA A (12)

FECOVETY.p is a block diagonal matrix with positive semi-ahit

blocks along the diagonal. SinEeis positive semi-definite,
the solution is not numerically stable. Such a fobwas
encountered while using FOCUSS for sparse signalvezgo
in Compressed Sensing [13]. To reach a stableiso|ud
must be positive definite. Following previous stslin |-
norm minimization [13] and Schatten-p norm minintiza

([16], we ensurd® is positive definite by adding a small term

along the diagonal, i.e. we replace,

D - D+el

Heree is a small constant that ensuk2ss positive definite.

This also guarantees that its inverse is positafeiie.
SolvingZ from (10b) and (11) we get,

A=—(AD'AT)Y (13)
Substituting the value af back in (16), we get,
X =D'AT(AD'A")Y (14)

In order to efficiently comput& in each iteration, we re-

write (14) as,

X =RX, whereX = AR (AR)AR J )'Y (15)
Here R is the Cholesky decomposition @™. The

decomposition exists sind®™ is a positive definite matrix.

The reason, we expressed (14) in the form (15etsabse

X can be solved very efficiently using the LSQR ailipon
[17]. The problem (8) is solved iteratively. In bateration
k, the matrixD, is computed based on the valueXofrom
the previous valueX;); the value ofXy is updated by

solving the least squares problem. The algorithm is

concisely expressed as follows:

L(X,A) :||x||§’p +0Tr(XTX)¥2 + AT (Y - AX)

where/ is the vector of Lagrangian multipliers.
The Karush-Kuhn-Tucker (KKT) conditions for arn
extremum to exist are the following normal equagion

(9)

Intitialize: X, =A"(AA")'Y which is a least square
solution; define

Repeat until stopping criterion is met:

Compute:

D, = pDiag(|X 5[ ) +na(X, X )*** + £l and
RR =D/

Update: X, = (AR)" ((AR)(AR,)") "y and
Decreases = £/10 iff |X, - X,,|, <tol

X, = RX,.

i p/2-1
0, L0, A) = pl|x | o
1 a, (10a)

+5nd KXT 3 X+A A= (
O,L(X,A)=AX-y=0 (10b)

i p/2-1
In (lOa)“|>< "2 Ximplies that the™ row of X (<) is

p/2-1

j-
muttiplied by X",
can be expressed as,
DX+A"A=0 (11

. In a more compact manner (10a)

)

There are two stopping criteria. The first one vt
on the maximum number of iterations. The seconthés
change in the value of the objective function ibsaquent
iterations; if the change is nominal, the iteragicstop; it
assumes that the solution has reached a local mnmimith

a tolerancetfl). The update step of the algorithm is solved

by LSQR. The LSQR method runs for 20 iterationse Th



value of¢ is initialized as 1. The tolerance level for démid
the decrease efis fixed at10?>,

2.1. Iterative Re-weighted L east Squares

3. EXPERIMENTAL RESULTS

The experimental methodology followed here is basefil,
3, 6]. The columns of matriA are drawn from a Normal
distribution and are normalized to have unit norifiee size

In the past the Ilterative Reweighted Least Squaresf A is 32 X 256. Four sets of experiments are caroiet

(IRLS) approach was used for recovering sparseakign
from under-sampled measurements [11]. This apprdsch
closely related to the FOCUSS. Similarly a methadIéw-
rank matrix recovery was developed using the IRLsthod
[14]. In this sub-section, we will discuss how dusion for
(8) can be alternatively derived based the IRLS @ggh.

The focus of this paper is on solving the combihgé
norm and Schatten-g norm minimization problem (8).

mxin||X||§p +/7||X||gq subject to¥ = AX

Above, we have derived a FOCUSS based algorithwvesol
it. In this sub-section, we will propose an alteensolution

based on IRLS. It can be shown tHet|} =[w,x|’ and
IXL =i where, W =Diag(x! [ +el and

W, = (XX"T)"¥?+¢l . Using these substitutions, (8) is
expressed as,

mX|n||W1X||§ +/7||W2X||§ subject to¥ = AX (16)
Alternatively,
2
i [Wl ] bject toy = AX a7
min X| subj =
<, ),

Here [ e ]implies that the matrices are vertically
AW,
concatenated.

This has a closed form solution. However, it can be
solved more efficiently using Conjugate GradienteT
values ofW; andW, are updated at each iteration based ot
the values ofX from the previous iteration. The IRLS
algorithm can be concisely represented as following

s R _ 2
Initialize: X, = n}<|n||Y AX||2
At iterationk (repeat until convergence)
. ; 1-p/2
W, =Diag(|X,"[,") + &l andw, = (X, X[~ + ¢l
1
X
WJ

[

£=€/10iff | X, — X, <tol

. W,
X, =min
X

subject toy = AX

The IRLS based algorithm is similar to our previous

the number of measurements vectorX ifN) are 1, 4, 8 and
16 for the four sets. The number of non-zero rowX iis
varied between 1 and 32 in steps of 1. The non-getes
in X are drawn from a Normal distribution.

We compare our proposed non-convex rank aware
(non-cvx RA) method with three existing methods:

1. Rank Aware Order Recursive Matching Pursuit (RA-
ORMP) [3].

2. Convex formulation for rank-aware row-sparse MMV
recovery (4) (Cvx RA) [4].

3. Convex formulation for (rank-blind) row-sparse MMV

recovery (3) (Cvx RB) [8].

Our method requires three values to be specifi¢toe—
valuesp andq in thel,-norm and Schatten-gq norms and the
value ofy that controls the relative importance of the two
norms. We found that the valups0.8 andg=0.8 yield the
best results. However, the variation in the redaltsvalues
of p andqg varying between 0.6 and 1 is only slight. The
value ofy is fixed at 0.1; this value was found to give good
results always.

For the following graphs, a recovery is considered
successful if the normalized mean squared erravdest the
recovered signal and the ground-truth is less thaertain
threshold {0 in this case). The probability of recovery is
defined as the number of successful recoveriesigiviby
the total number of trials for each configuratid®@0 in this
case).

Comparison of probablity of recovery for N=1
1

— RA-ORMP
Cwx RA
Cvx RB
Prapoged []

0sr

[=]
=z}

o
~
T

Probability of Recovery
o o o o o
ma (A1) = o o

o

[}

15 20 25 30
Sparsity k

(@)

(=]

10 35

FOCUSS based algorithm. The least squares probéem i
solved by LSQR. Also the stopping criteria and the
thresholds are the same.



Comparison of Probability of Recovery for N=4
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Fig. 1. Comparison of Probability of Recovery. (Bpr one
measurement vector, (b) for 4 measurement vec{gjsfor 8
measurement vectors and (d) for 16 measuremerdrsect

Figure 1, gives the comparative probability of
recoveries from various algorithm for different raen of
measurement vectors. The probability of recovesynfiRA-
ORMP is almost the same as reported in [3]. Thievighg
conclusions can be drawn:

1. Our proposed non-convex rank aware recovery method
always yields the best probability of recovery.
2. For all methods, the probability of recovery in@esas

the number of measurement vectors increases. This

observation has been made in previous studies ks we

[3, 5, 8].

The improvement in probability of recovery is evitle
from Fig. 1. In Fig. 1la (N=1), at a sparsity of lbe
probability of recovery from our method is 0.78 s the
probability of recovery from the convex formulatia0.57
and from RA-ORMP is 0.32. Similar observations dsn
made from the other graphs as well (Fig. 1b-d).

4. CONCLUSION

In row-sparse MMV recovery, the unknown vectorshto
reconstructed have a common support; therefore whmn
are stacked as columns of the MMV matrix, the &gyl
MMV matrix is row-sparse. Until recently, this pteln was
solved by taking into account the row-sparsity of t
solution. However such an MMV matrix is low-rankwasll.
Recent studies [3, 4] showed that when the infaonat
about the MMV matrix’s low rank property is expkeit
along with row-sparsity, the recovery results imyaroln [3]

a greedy algorithm called Rank aware Order Recarsiv
Matching Pursuit (RA-ORMP) is proposed to solve rie-
sparse MMV recovery problem in a rank aware fashion
[4] a convex optimization based method is propofad
solving this problem. This method minimizes the safrthe
[,1-norm (promoting row-sparsity) and the Nuclear norm
(promoting rank deficiency) subject to the datastraints

is.

Following studies in non-convex methods for spairse
low-rank recovery we here propose a non-convex
optimization problem that minimizes the sum oflthrnorm
and the Schatten-q norm subject to data constrailts
derive an algorithm to solve it based on the FOCUSS
approach. We compare our method against stateecedith
methods in rank aware and rank blind row-sparse MMV
recovery. Experimental validation shows that owpomsed
method always yields better results.

REFERENCES

[1] A. Majumdar and R. K. Ward, “Calibration-less Mu@bil
MR Image Reconstruction”, Magnetic Resonance Intgin
Vol. 30 (7), pp. 1032-1045, 2012.

[2] Z. zZhang, T. P. Jung, S. Makeig and B. D. Rao, “Passed
Sensing of EEG for Wireless Telemonitoring with Low



Energy Consumption and Inexpensive Hardware”,
arXiv:1206.3493v1.

[3] M. E. Davies and Y. C. Eldar, “Rank Awareness imntlo
Sparse Recovery”, IEEE Transactions on Informatibeory,
Vol.58 (2), pp.1135-1146, 2012.

[4] M. Golbabaee and P. Vandergheynst, “Guaranteedeecof
a low-rank and joint-sparse matrix from incomplatel noisy
measurements”, SPARS 2011.

[5] E. van den Berg and M. P. Friedlander, “Theoretaatl
empirical results for recovery from multiple measuents”,
IEEE Trans. Info. Theory, Vol. 56 (5), pp. 2516-252010.

[6] S. F. Cotter, B. D. Rao, K. Engang, and K. Kreutdgado,
“Sparse solutions to linear inverse problems withltiple
measurement vectors”. IEEE Trans. Sig. Proc., ¥8I(7), pp.
2477-2488, 2005.

[71 M. Mishali and Y. C. Eldar, “Reduce and boost: Rexing
arbitrary sets of jointly sparse vectors”, IEEE fisa Sig.
Proc., Vol. 56(10), pp. 4692-4702, 2008.

[8] A. Majumdar and R. K. Ward, “Synthesis and AnalyRigor
Algorithms for Joint-Sparse Recovery”, ICASSP, 3d21-
3424, 2012.

[91 J. A. Tropp, “Algorithms for simultaneous sparse
approximation: Part II: Convex relaxation”, Sigabcessing,
Vol. 86, pp. 589,-602, 2006.

[10] B. Recht, W. Xu, and B. Hassibi, “Null Space Coiudis and
Thresholds for Rank Minimization”, Mathematical
Programming. Ser B. Vol. 127, Pages 175-211. 2011.

[11] E. J. Candés and T. Tao. “The power of convex edlax:
Near-optimal matrix completion”, IEEE Trans. Infarftheory
56(5), 2053-2080.

[12] R. Chartrand and V. Staneva, “Restricted isometopgrties
and nonconvex compressive sensing”, Inverse Prahleoi.
24, no. 035020, pp. 1--14, 2008.

[13] R. Chartrand and W. Yin, “lteratively reweighted@iithms
for compressive sensing”, ICASSP 2008.

[14] A. Majumdar and R. K. Ward, “Some Empirical Advaside
Matrix Completion”, Signal Processing, Vol. 91 (bp. 1334-
1338, 2011.

[15] A. Majumdar, R. K. Ward and T. Aboulnasr, “A FOCUSS
Based Method for Low Rank Matrix Recovery”, |[EEE
International Conference on Image Processing, 2012
(accepted).

[16] K. Mohan, M. Fazel, lterative Reweighted Least Sgsdor
Matrix Rank Minimization, Proc. Allerton Conferenamn
Communications, Control, and Computing, Sep 2010.

[17] C. C. Paige and M. A. Saunders, “LSQR: An algoritfan
sparse linear equations and sparse least squai&dlV)
Transactions on Mathematical Software, Vol. 8(3), 43-71,
1982.



