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ABSTRACT

In this paper, we propose a new object based validity index

using linear discriminant analysis (OVI-LDA). In OVI-LDA,

each object is assigned an index value which is the log ratio

of between-group distance to within-group distance. Unlike

another object based validity index – Silhouette, OVI-LDA is

suitable for both crisp and fuzzy clustering. Furthermore, its

object based feature and dual-type capability lead to a consen-

sus clustering by aggregating multiple crisp and fuzzy clus-

tering results. For the demonstration purposes, we study a set

of benchmark datasets with a variety of signal-to-noise ratio

(SNR) levels and compare the results with other well known

indices. The results show that the proposed OVI-LDA pos-

sesses not only all capabilities that other validity indices have,

but also the capability to guide consensus clustering. The con-

sensus clustering is also validated using a third-party validity

index.

Index Terms— Clustering validation, Fisher linear dis-

criminant analysis, Consensus clustering

1. INTRODUCTION

Clustering, also known as unsupervised learning, always

needs to be judged by clustering validation because of two

following reasons: the first is that due to the unsupervised

nature, a metric, which is able to measure the goodness of

clustering results, is required for comparison purposes; the

second is that due to lack of a prior knowledge, clustering

validation method should have the ability to indicate the true

number of clusters in the datasets. The most popular way to

use the clustering validation methods in the clustering analy-

sis is comparing index values over a set of clustering results

with varying numbers of clusters to find the best number of

clusters [1–3].

There are mainly three classes of clustering validation

methods if we only consider the cases that there is no a prior

knowledge about the memberships and the number of clusters
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(we exclude the cases that clustering algorithms are assessed

by a prior knowledge in some simulated datasets). The first

class is known as model based algorithms. There are many

examples of such criteria, including minimum description

length (MDL) [4], Bayesian inference criterion (BIC) [5],

minimum message length (MML) [6]. The second class is

re-sampling based methods, like figure of merit (FOM) [7],

which is similar to cross validation.

The third class is distance ratio based validations, also

known as validity indices, which are the focus of this re-

search. These indices measure the within-group distance to

the between-group distance ratio and regard the clustering re-

sult with the minimum index value as the best, or measure

the reciprocal to look for the maximum value. They are dif-

ferent with their different methods to calculate the within-

group and between-group distances. In this class, some valid-

ity indices are specific to crisp clustering algorithms, namely

Calinski-Harabasz (CH) index [8], Davies-Bouldin (DB) in-

dex [9], I index [10], Silhouettes [11], and some others [12–

15]; some indices are specific to fuzzy clustering algorithms,

namely partition coefficient (PC), partition entropy (PE) and

so on [16, 17]; some others can be used for both fuzzy and

crisp algorithms, namely Fukuyama-Sugeno (FS) index, Xie-

Beni (XB) index (XB is equivalent to DB when validating

crisp clustering) and Kwon’s extended XB (KEXB) index [17,

18]. All of these validity indices except Silhouette index con-

sider the clustering as a whole to answer how good the clus-

tering rather than tell if each object is appropriately grouped

into a certain cluster. Silhouette index is an object based va-

lidity index, but only suitable for crisp clustering. Thus, the

research on a general object based validity index for both crisp

and fuzzy clustering algorithms remains unaddressed.

In this paper, we propose a new object based validity in-

dex using linear discriminant analysis (OVI-LDA), which can

be used to validate both crisp and fuzzy clustering algorithms.

In OVI-LDA, each object is assigned an index value which is

the log ratio of the distance between it and the centroid of the

closest neighbouring cluster to the distance between it and the

centroid of the cluster where the object is located. Thus the

quality of clustering result can be assessed by averaging the

EUSIPCO 2013 1569741427
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OVI-LDA over all objects and the quality of individual cluster

can be assessed by averaging the OVI-LDA over the objects

within the cluster. Also one can tell if individual object is ap-

propriate or not in its cluster in terms of its OVI-LDA value.

Additionally, a consensus clustering is proposed as an appli-

cation of OVI-LDA to aggregate multiple clustering results.

For the demonstration purposes, we study the quadratic phase

shift key (QPSK) datasets with a variety of signal-to-noise

ratio (SNR) levels and compare the results with other well

known indices. The results show that the proposed OVI-LDA

possesses not only all capabilities that other validity indices

have, but also the capability to guide consensus clustering.

The consensus clustering is also validated using third-party

validity indices.

The rest of the paper is organized as follows: Sec. 2 de-

scribes the details of the OVI-LDA. Sec. 3 presents a consen-

sus clustering guided by OVI-LDA. Sec. 4 briefly introduces

the datasets explored in the paper and presents the numeri-

cal results. Finally, discussions and conclusions are given in

Sec. 5.

2. PROPOSED VALIDITY INDEX

In this section, we detail the principle of the proposed ob-

ject based validity index, which employs linear discriminant

analysis (OVI-LDA). Suppose that we have many algorithms

to partition the dataset X = {xn|1 ≤ n ≤ N}, where

xn ∈ R
M×1 denotes the n-th object, M is the dimension, and

N is the number of objects. Thus, there are a set of clustering

results C = {CK,c,i|Kmin ≤ K ≤ Kmax, 1 ≤ c ≤ C, 1 ≤
i ≤ Ne} provided by C different clustering algorithms on the

same dataset, where Kmin and Kmax are the minimum and

maximum expected number of clusters, and Ne is the number

of experiments of clustering. For some algorithms with deter-

ministic initialization, Ne is set to one. Each clustering result

CK,c,i is a N × K partition matrix, where each entry un,k

represents the membership of the n-th object in the k-th clus-

ter. The properties of the partition matrix is mathematically

expressed by

(1) un,k ∈ [0, 1], 1 ≤ n ≤ N, 1 ≤ k ≤ K,

(2)
∑K

k=1
un,k = 1, 1 ≤ n ≤ N,

(3) 0 ≤
∑N

n=1
un,k ≤ N, 1 ≤ k ≤ K.

The crisp clustering partition matrix can be viewed as a spe-

cial fuzzy clustering partition matrix with un,k ∈ {0, 1}. The

validation algorithms have to find out the best clustering result

out of these clustering results and the best number of clusters

Kbest in terms of validity index value.

LDA, which is also known as Fisher’s linear discriminant

analysis, has been widely used in the feature reduction and

classification [19]. It defines a linear classifier to character-

ize and separate two or more classes. Here, we introduce

the LDA classifier for two classes into clustering validity in-

dex and measure the fitness of individual object in its clus-

ter. Since clustering an individual object into a cluster is only

challenged by its closest neighbouring cluster, we may sim-

plify the clustering validation problem to a two-class classi-

fication problem. The OVI-LDA for each clustering result

CK,c,i is an array with the dimension of (N × 1). Each of

its entry vn represents the log ratio of the distance between

n-th object and the centroid of the closest neighbouring clus-

ter (between-group) to the distance between n-th object and

the centroid of the cluster where the object is located (within-

group), which can be written mathematically by

vn = log

{

D(xn,µ
′′)

D(xn,µ′)

}

, (1)

where D(a, b) is the distance measure between vectors a and

b. µ′′ denotes the centroid of the closest neighbouring cluster

of object xn and µ′ is the centroid of the cluster where xn

locates. The centroid of the k-th cluster µk can be given by

µk =
1

lk

N
∑

n=1

um
n,kxn, (2)

where lk =
∑N

n=1
un,k is the weight (or number of members)

of k-th cluster, and the fuzzifier m determines the level of

cluster fuzziness. Thus, we can assess the whole clustering

quality by averaging the OVI-LDA

V =
1

N

N
∑

n=1

vn, (3)

or we can assess the quality of the k-th cluster

Vk =
1

lk

∑

xn∈Ck

vn, (4)

In this work, we employ Mahalanobis distance for the dis-

tance measure. Thus between-group and within-group dis-

tances are given by

D(xn,µ
′′) =

√

(xn − µ′′)TΣ−1(xn − µ′′),

D(xn,µ
′) =

√

(xn − µ′)TΣ−1(xn − µ′), (5)

where (·)T is the transpose operator and Σ is the combined

covariance matrix of n-th object locating cluster and its clos-

est neighbouring cluster, which is written mathematically by

Σ =
(l′ − 1)Σ′′ + (l′′ − 1)Σ′

l′ + l′′ − 2
(6)

where Σ
′′ is the covariance matrix for the closest neighbour-

ing cluster, Σ′ is the covariance matrix for the local cluster,

and l′′ and l′ are their weights respectively. The covariance

matrix for the k-th cluster is obtained by

Σk =
1

lk − 1

N
∑

n=1

um
n,k(xn − µk)(xn − µk)

T . (7)
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Table 1. Comparison between OVI-LDA and many existing clus-
tering validity indices.

Algorithms crisp fuzzy
Quality Assessment for

Consensus
dataset cluster object

CH YES NO YES NO NO NO
DB YES NO YES NO NO NO
I index YES NO YES NO NO NO
GI YES NO YES NO NO NO
VI YES NO YES NO NO NO
PVI YES NO YES NO NO NO
KVIs YES NO YES NO NO NO
Silhouette YES NO YES YES YES N/Y*
PC NO YES YES NO NO NO
PE NO YES YES NO NO NO
XB YES YES YES NO NO NO
FS YES YES YES NO NO NO
OVI-LDA YES YES YES YES YES YES

* Silhouette: NO for consensus cross crisp and fuzzy clustering,
but YES for only consensus of crisp clustering.

Note that from estimation theory point of view, if there are not

enough samples in one cluster, the estimation of its parame-

ters would be unreliable. We set a threshold Tl for the number

of members in clusters to regulate OVI-LDA: if lk < Tl, then

the k-th cluster will be discounted and the OVI-LDA values of

the members in that cluster will be set not-a-number (NAN).

In Table 1, we list many existing validity indices in the

literature and their capabilities, namely CH, DB, I index, GI,

VI, PVI, kernel validity indices (KVIs), Silhouette, PC, PE,

XB, FS and the proposed OVI-LDA. Each row of the Table

represents one validity index and each column represents one

capability type. Each cell of the Table is filled with YES or

NO to indicate if the corresponding validity index has the

corresponding capability or not. We consider six different

capabilities, including the capability to assess crisp cluster-

ing (crisp, for short), the capability to assess fuzzy cluster-

ing (fuzzy), the capability to assess quality at the level of a

dataset, the capability to assess quality at the level of an in-

dividual cluster, the capability to assess quality at the level

of an individual object and the capability to guide consensus

clustering. As shown in the Table, CH, DB, I index, GI, VI,

PVI, KVIs and Silhouette are only suitable for crisp cluster-

ing. Except Silhouette, other seven crisp validity indices only

have capability to assess the clustering treating the dataset as a

whole and provide the estimated best number of clusters. Sil-

houette has capabilities to assess individual cluster and object

because of its object-based nature. PC and PE are fuzzy-only

validity indices; XB and FS can work for both fuzzy and crisp

clustering. These four indices also only assess the clustering,

treating the dataset as a whole. It is worth noting that the pro-

posed OVI-LDA possesses all capabilities. We highlight two

object based validity indices, i.e., Silhouette and OVI-LDA.

The difference between these two indices is that the proposed

OVI-LDA can deal with both fuzzy and crisp clustering. Due

to the object-based nature and dual-type capability, the pro-

posed OVI-LDA can guide a consensus clustering to aggre-

gate multiple clustering results, which will be explored in the

next section. Although Silhouette has the potential for com-

bining crisp partitions, this application has not been explored

Table 2. The pseudo-code for the routine of converting the consen-
sus matrix to the partition matrix P .

Initializing P = ∅, K = 0;
for n = 1 : N do

if {P is ∅ OR P (n, :) is zero vector} AND Ef (n, :)
contains more than one entry greater than 0 then
K = K + 1;

P (:,K) = Ef (n, :)T

end if
end for
Output K and P .

in the literature.

3. CONSENSUS CLUSTERING

In this section, we present an application of the proposed

OVI-LDA to the consensus clustering. To reach a consensus

clustering, there are several steps as follows:

STEP 1: Suppose that we have C clustering algorithms,

each clustering algorithm will provide a set clustering results

with variable number of clusters, say Kmin to Kmax. We cal-

culate OVI-LDA for each object and average OVI-LDA of the

dataset for each clustering result. For some randomly initial-

ized algorithms, to make the clustering results representative

to the clustering algorithm, we have to run Ne experiments

and choose the best clustering results for every choice of K
in terms of averaged OVI-LDA index value.

STEP 2: For each clustering algorithm, we compare the

averaged OVI-LDA index values over Kmin to Kmax to find

the best estimated K. Thus, we have C clustering results and

they do not necessarily have same number of clusters.

STEP 3: We set a threshold, Tv to filter the objects whose

OVI-LDA validity indices in any results below Tv . Thus we

may obtain a list of objects which are certainly appropriate

with the positions where they are in all clustering results.

STEP 4: We convert each clustering result for the same

list of objects to connectivity matrix. Connectivity matrix was

defined as a (N ×N ) sparse matrix Ec for the c-th clustering

result and its entries are

Ec
i,j =

{

1, if objects i and j in the same cluster

0, otherwise.
(8)

where i, j = 1, ..., N .

STEP 5: The consensus matrix can be obtained by

E =
C
∑

c=1

Ec. (9)

Then, we further truncate E to the final consensus matrix Ef

by

Ef
i,j =

{

Ei,j if Ei,j ≥ ⌈C/2⌉

0 if Ei,j < ⌈C/2⌉,
(10)

3
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Table 3. Results comparison shows the estimated best number of
clusters by each validity index for each QPSK dataset and each clus-
tering algorithm.

Data Algorithms CH PE XB FS Sil proposed

2 dB

GG - 2 6 4 - 4
FCM - 2 20 4 - 4
K-Means 3 - 20 3 3 3
KMeans-KA 3 - 19 3 3 3
HC-Ward 4 - 20 4 3 4
Consensus - - - - - 4

5 dB

GG - 2 4 4 - 4
FCM - 2 4 4 - 4
K-Means 4 - 20 4 4 4
KMeans-KA 4 - 4 4 4 4
HC-Ward 4 - 4 4 4 4
Consensus - - - - - 4

8 dB

GG - 2 4 4 - 4
FCM - 4 4 4 - 4
K-Means 4 - 4 4 4 4
KMeans-KA 4 - 4 4 4 4
HC-Ward 4 - 4 4 4 4
Consensus - - - - - 4

where ⌈·⌉ is the ceil operator. As soon as we get the final con-

sensus matrix Ef , we can easily convert it back to the parti-

tion matrix P . The pseudo code of the converting routine is

shown in Table 2, where P (n, :) is the operation of getting

the n-th row from the matrix P and P (:,K) is the operation

of getting the K-th column. For some applications, for exam-

ple gene discovery, the produced partition matrix can be the

clustering output, since only small portion of objects forming

very tight clusters should be preferably investigated.

STEP 6: For the applications which need a complete par-

tition, we can employ the produced partition matrix P as a

guideline, which defines the core for each cluster and helps

the estimation of the parameters including the centroids and

the covariance matrices. Finally, we can obtain the final par-

tition matrix P f by employing the estimated parameters,.

4. NUMERICAL RESULTS

Here, we present the performance comparison between the

proposed OVI-LDA and some existing validity indices, as

well as the performance of the proposed consensus clustering.

In this wok, we study one benchmark case using quadratic

phase shift key (QPSK) datasets with the signal-to-noise ra-

tio (SNR) from 1 dB to 10 dB (ten datasets). We employ

five clustering algorithms, including two fuzzy algorithms,

namely fuzzy c-means (FCM) [20] and Gath-Geva (GG) [21],

and three crisp algorithms, namely normal KMeans, hierar-

chical clustering with ward linkage (HC-Ward), KMeans with

Kaufman approach initialization [22] (KMeans-KA). Since

GG, FCM and KMeans are randomly initialized, we set the

number of experiments to Ne = 1000 for one dataset, while

for deterministic algorithms like HC-Ward and KMeans-KA,

only one experiment is enough. Each dataset in each exper-

iment is clustered using each algorithm with the number of

clusters from Kmin to Kmax. Thus, one can find the best

clustering for each K among all Ne experiments in terms of

different validity indices, and then find the best clustering (the

Fig. 1. Demonstration of OVI-LDA for each clustering algo-
rithm, QPSK 2dB dataset.

best K) for the dataset cross Kmin to Kmax.

Due to the limitation of the space, we choose three QPSK

datasets with low SNR (2dB), moderate SNR (5 dB) and high

SNR (8 dB) to display the result comparison. In Table 3,

the estimated best numbers of clusters by each validity index

for each dataset and each clustering algorithm are shown. It

shows that for the moderate and high SNR datasets, most of

validity indices work properly. But for the low SNR dataset,

the majority of the estimated best Ks are wrong. In this case,

it is difficult to judge which clustering is better and how many

clusters in the dataset. Thus, the consensus clustering appears

to be extremely useful. Note that the OVI-LDA indicates that

KMeans and KMeans-KA have the best K equal to three and

other three have K = 4. The contour and the mesh plots of

OVI-LDA of the best clustering results by all clustering algo-

rithms for QPSK 2dB dataset are shown in in Fig. 1. These

clustering results are fed into consensus clustering and final

4
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Fig. 2. Comparison of the validity index values over the SNR
level between consensus clustering and other clustering algo-
rithms using (a) XB index, (b) FS index.

consensus result is four clusters, which is highlighted in the

table. We also validate the consensus clustering result using

both XB and FS algorithms, which are third party algorithms.

Both of them consider the minimum values as the best. The

results are shown in Fig. 2. Interestingly, two validity indices

do not show consistency: the XB index values of the pro-

posed consensus clustering is the lowest and slightly lower

than GG; while the FS index values of consensus clustering

is only lower than FCM but higher than others. However, we

also notice that the FS index values of the crisp algorithms

are always lower than fuzzy ones. It turns out that FS validity

index is sensitive to the fuzziness and issue low value to crisp

or near-crisp algorithms. Thus, in this case, XB endorses that

the proposed consensus clustering has the best performance.

5. CONCLUSIONS

We proposed a new object based validity index using linear

discriminant analysis (OVI-LDA). Most validity indices in

the literature, namely CH, DB, I index, GI, VI, PVI, KVIs,

PC, PE, FS, XB, and KEXB, are not object-based indices,

except Silhouette. Only Silhouette is capable of indicating

how fit an individual object is in its cluster. However, Silhou-

ette is only suitable for crisp clustering results. The proposed

OVI-LDA possesses not only all capacities that other validity

indices have, but also the capability to guide consensus clus-

tering. The results showed that most validity indices worked

properly at moderate or high SNR levels but there were great

discrepancies among all validity indices at low SNR levels. A

consensus clustering guided by OVI-LDA appeared to be use-

ful to aggregate multiple clustering results. It was validated to

be the best clustering by XB, which is a third-party algorithm.
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