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ABSTRACT

In relation to speech enhancement, we study the influence of

modifying the harmonic signal model for voiced speech to

include small perturbations in the frequencies of the harmon-

ics. A perturbed signal model is incorporated in the nonlinear

least squares method, the Capon filter and the amplitude and

phase estimation filter. Results show that it is possible to in-

crease the performance, in terms of the signal reduction factor

and the output signal-to-noise ratio, at the cost of increased

complexity in the estimation of the model parameters. It is

found that the perturbed signal model performs better than the

harmonic signal model at input signal-to-noise ratios above

approximately −10 dB, and that they are equally good below.

Index Terms— Single-channel speech enhancement, per-

turbed signal models, inharmonicity, parameter estimation

1. INTRODUCTION

In systems such as mobile phones, teleconferencing systems

and hearing aids, noise interferes with the speech signal which

has a detrimental effect on the quality of the resulting signal.

Speech enhancement is therefore an important component in

such systems. Speech enhancement can be performed using

different approaches. A common one is filtering based on

the noise statistics, e.g., using the Wiener filter. This method

is very vulnerable to nonstationary noise because the prob-

lem of estimating noise statistics in the presence of speech is

non-trivial [1,2]. Another approach is to optimise filtering by

assuming a model of the speech signal, as for example the har-

monic signal model used in [2–6]. However, some problems

arise when the harmonic signal model is used. The first is that

only the voiced part of the speech signal can be modelled by a

harmonic signal model. A second is due to the voiced speech

being quasistationary, which means that the fundamental fre-

quency changes over time. To minimise the effect of this, the

processing is done on small segments, where the signal can

be assumed periodic. A third problem is that voiced speech is

not perfectly harmonic [7]. There are small perturbations in

the frequencies of the harmonics and therefore they do not co-

incide completely with the harmonics of the assumed model.

This work was funded by the Villum Foundation.

This causes unwanted distortion in the resulting speech signal

when using a signal driven approach. The phenomenon of in-

harmonicity is well known from musical instruments, where

the perturbations of the harmonics are very well defined and

have to be taken into account, for example in the tuning of

pianos [8]. Inharmonic models are also used in [6, 9] for fun-

damental frequency estimation in musical signals, but the re-

search of the influence of inharmonicities in speech is very

sparse. The inharmonicity in voiced speech is not as pre-

dictable as in musical instruments and a less restrictive model

is therefore used in speech, (see e.g. [5, 7]). Inharmonicities

are taken into account in the estimation of the amplitudes of

the harmonics in [10], but the influence of using a perturbed

signal model on the filter performance in speech enhancement

has not been studied.

The purpose of this paper is, therefore, to investigate

whether using a perturbed signal model will have an effect on

filter performance, in terms of the signal reduction factor and

the output signal-to-noise ratio (oSNR). The perturbations

in synthetic signals and a set of voiced speech signals are

estimated by incorporating the perturbed signal model in a

nonlinear least squares (NLS) method [11] and the Capon and

amplitude and phase estimation (APES) filters [12]. The es-

timated perturbations are then used in filtering of the signals

with the APES filter [13] in order to find the gain in signal

reduction factor and oSNR when compared to filtering based

on the harmonic signal model.

In Section 2, the used signal model is presented along with

the applied methods for estimation of the perturbations and

filtering. In Section 3, the choices for the setup of experiments

are explained followed by the results in Section 4, and Section

5 concludes the work.

2. METHODS

2.1. Signal model

A commonly used model of N samples of voiced speech or

musical instrument recordings is given by a sum of complex

EUSIPCO 2013 1569741109
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sinusoids, s(n), corrupted by noise, e(n), as

x(n) =
L∑

l=1

ale
jψln + e(n) = s(n) + e(n), (1)

where L is the model order. The l’th complex sinusoid has

frequency ψl and complex amplitude al = Ale
jφ withAl > 0

and φl being the real amplitude and phase, respectively. The

noise term, e(n), is assumed to be zero mean and complex.

Measurements of speech are real valued but can be converted

to the complex representation by use of the Hilbert transform

and be downsampled by a factor of two if N is sufficiently

large [5].

Defining a subvector of samples x(n) = [x(n) x(n −
1) . . . x(n−M +1) ]T , where M ≤ N and (·)T denotes the

transpose, the signal model can be written as

x(n) = Z



e−jψ1n 0

. . .

0 e−jψLn


a+ e(n), (2)

where L < M and Z ∈ C
M×L is a matrix with Vandermonde

structure given by

Z =
[
z(ψ1) z(ψ2) . . . z(ψL)

]
, (3)

z(ψl) =
[
1 e−jψl . . . e−jψl(M−1)

]T
, (4)

a = [a1 . . . aL]
T is a vector containing the complex ampli-

tudes of the signal and e(n) is defined like x(n), but contain-

ing the noise terms e(n).
Often, voiced speech is characterised using a harmonic

signal model obtained by setting ψl = ω0l. The harmonics

are then exact multiples of the fundamental frequency, ω0.

In many musical instruments, the frequencies of the harmon-

ics deviate slightly in a very predictable manner, leading to

ψl = ω0l
√
1 +Bl2, where B � 1 is an instrument de-

pendent stiffness parameter [5]. In speech, perturbations of

the harmonics are also present, however, they are not as pre-

dictable as in music, leading to a less restrictive model for

speech with [5].

ψl = ω0l +∆l. (5)

Here, the perturbations, ∆l, are assumed to be small and

evenly distributed in the interval Pl = [−δl,+δl], where δl
is a small and positive number. Further, it is assumed that

ψl < ψk ∀ l < k.

The considered problem can either be solved by estimat-

ing ψl and from this find estimates of ω0 and ∆l [14], or the

fundamental frequency can be estimated first and thereafter

∆l. The second approach is taken in this paper and the fun-

damental frequency is therefore assumed known. Further, the

model order is assumed to be known as well. Both the fun-

damental frequency and the model order can be found, e.g.,

using one of the methods in [13].

2.2. Nonlinear least squares method

The maximum a posteriori estimatior, which is asymptotically

optimal, will, under the assumption of white Gaussian noise

and a uniform distribution of ∆l in Pl, reduce to the NLS

method [5]. NLS minimises the error between the recorded

data and the signal model from (2) with M = N [5]

{∆̂l} = arg min
a,{∆l∈Pl}

‖x(n)− Za‖22, (6)

with ‖ · ‖2 denoting the `2-norm. Minimisation of (6) with

respect to a followed by insertion of the result in (6) will lead

to the concentratred NLS estimator of the perturbations given

by [5]

{∆̂l} = arg max
{∆l∈Pl}

x
H
Z(ZHZ)−1

Z
H
x, (7)

where (·)H denotes the Hermitian transpose.

When the noise is colored or when several speakers are

present, the NLS estimator might not be the optimal choice

and therefore it is instructive to look at other estimation meth-

ods as well.

2.3. Capon filter

The Capon filter is designed to minimise the output of the

filter while having unit gain at the harmonic frequencies. This

minimisation problem can be expressed as [5]

min
h

h
H
Rxh s.t. h

H
Z = 1, (8)

where h = [h(0)h(1) . . . h(M − 1)]H is the filter response,

1 = [1 . . . 1]T and Rx is the covariance matrix of x defined

as

Rx = E{x(n)xH(n)}, (9)

with E{·} denoting statistical expectation. When s(n) and

e(n) are uncorrelated, the covariance matrix of x is given by

the sum of the covariance matrices of the signal, Rs, and the

noise, Re, i.e., Rx = Rs +Re. However, none of these are

known and Rx has to be estimated as, e.g.,

R̂x =
1

N −M + 1

N−M∑

n=0

x(n)xH(n). (10)

The filter that minimises (8) is given by [5]

h = R
−1
x Z(ZHR

−1
x Z)−1

1. (11)

By maximising the output power of this filter, the perturba-

tions can be estimated as

{∆̂l} = arg max
{∆l∈Pl}

1
H(ZHR

−1
x Z)−1

1, (12)
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2.4. Amplitude and phase estimation filter

The APES filter uses the same principle as the Capon filter.

The only difference is that another covariance matrix is used

in (8) which is estimated by subtracting from Rx the covari-

ance corresponding to the part of x that resembles the signal

model [13]

R̂e = R̂x −G
H
W

−1
G, (13)

with

G =
1

N −M + 1

N−M∑

n=0

w(n)xH(n), (14)

W =
1

N −M + 1

N−M∑

n=0

w(n)wH(n), (15)

where w(n) = [ ejψ1n . . . ejψLn ]T .

The optimisation problem for the APES filter is then given

by (8) with Rx replaced by R̂e and the solutions for the op-

timal filter and the perturbations are given by (11) and (12)

also with Rx replaced by R̂e.

2.5. Numerical optimisation

The estimation of the perturbations by means of (7) or (12)

is a multidimensional, nonlinear and nontrivial problem. Di-

rect estimation is therefore not feasible [11] and approximate

solutions have been found as explained in what follows.

The perturbations are found one at a time by a grid search

in the intervals Pl. An approximate position of the maximum

is found at first, followed by a Fibonacci search [15] to give

an increased resolution. If the cost functions in (7) and (12)

for a given harmonic have no peak inside Pl, the perturbation

is set to zero.

The NLS algorithm needs information about the pertur-

bations of all harmonics in order to find the minimum dis-

tance between x(n) and the signal model Za in (6). In the

first approach, denoted NLS-I, the perturbations are initialised

with zeros and continuously updated with the estimated val-

ues of the perturbations. In the second approach, denoted

NLS-II, the perturbations are initialised with the correct val-

ues of the perturbations and only the value of the perturbation

under investigation is changed. With this second approach,

the estimation of the perturbations is not influenced by errors

in the frequencies of the other harmonics. Estimates based

on NLS-II are therefore expected to reach the Cramér-Rao

bound (CRB) and can in that case be used to bound the per-

formance of other methods. It will of course only be possible

to use NLS-II on synthetic signals where the perturbations are

known. Using the Capon and APES filters for estimation, it

is found that the best results are obtained using a single or-

der filter fitted to the harmonic under investigation, compared

to using a filter of order L. Therefore, first order filters have

been used.

3. EXPERIMENTAL SETUP

The different ways to estimate ∆l were evaluated through

Monte Carlo simulations (MCS). A signal of the form (1)

with {ψl} given by (5) was generated and the performance

of the different methods was evaluated by means of the mean

squared error (MSE), 1
LK

∑L

l=1

∑K

k=1(∆l,k − ∆̂l,k)
2, where

K is the number of MCS. The MSE was evaluated as a func-

tion of the input signal-to-noise ratio (iSNR) and the number

of samples, N , and compared to the CRB for unconstrained

frequency estimation [11].

The signal was generated with L = 5, Al = 1 ∀ l, ran-

dom phase, fundamental frequency and perturbations in the

intervals φl ∈ [0, 2π], f0 ∈ [150, 250] Hz, ∆l ∈ [−15, 15]
Hz, and δl was chosen to be 30 Hz. The Fibonacci search was

performed with 14 iterations. The noise was white Gaussian

with a standard deviation calculated from the desired iSNR.

When N was varied, the iSNR was set to 10 dB, whereas

when the iSNR was varied, N was fixed at 200. In the Capon

and APES filters, the filter length was set to bN/4c, with b·c
denoting the floor operator. According to [4], this should

be a good choice of filter length for both filter types. The

number of MCS was K = 500. The importance of includ-

ing perturbations in the filter design was tested by making

APES filters with the estimated perturbations included and

comparing them to a filter based on the harmonic assumption,

∆l = 0 ∀ l. The APES filter was chosen since it was found to

perform better than the Capon filter, when filtering based on

already estimated frequency components is considered, which

is consistent with frequency and amplitude estimation results

in [12]. The performance of the filters with a perturbed and

a harmonic signal model was evaluated by calculation of the

signal reduction factor, ξsr(h), and the oSNR(h) given by [2]

ξsr(h) =
σ2
s

σ2
s,nr

=
σ2
s

hHRsh
, (16)

oSNR(h) =
σ2
s,nr

σ2
e,nr

=
h
H
Rsh

hHReh
, (17)

where σs and σs,nr are the variances of the signal before and

after filtering and σe,nr is the variance of the noise after filter-

ing. Without signal distortion, the variance of the desired sig-

nal before and after filtering is the same, and, therefore, ξsr(h)
should preferably be one. However, even though ξsr(h) = 1,

the signal can still be distorted in subbands [2]. Further, better

performance after filtering requires oSNR(h) > iSNR.

In order to test the perturbed signal model on voiced

speech, recordings from the Keele database [16] were used.

Four different speakers were used, two men and two women.

The speech signal was downsampled to have a sample fre-

quency of 8 kHz and divided into four non-overlapping seg-

ments, one for each speaker. Voiced sections and uncertain

voiced sections with periodicity in the laryngograph were

treated as voiced speech and extracted from the speech sig-

nal. Hereafter, voiced speech segments with a length shorter

3
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than 3N were discarded. In total, the performance measures

were calculated for 49013 samples of voiced speech and av-

eraged. Random white noise was added to give the desired

iSNR and the performance was evaluated for the harmonic

signal model and for perturbations estimated with NLS-I and

Capon. Since the lowest fundamental frequency in the speech

signal was 57 Hz, δl was set to 25 Hz.

4. EXPERIMENTAL RESULTS

The MSEs of the estimated perturbations were averaged over

all harmonics and are shown in Fig. 1 as a function of N and

the iSNR. NLS-II reaches the CRB for all N , whereas NLS-I

and Capon follow the same course from 100 samples and up

with a small but constant gap to the CRB. The APES filter

does not perform well for estimation of the perturbations, as

was also found in [12] in the case of fundamental frequency

estimation. No method reaches the CRB at low iSNRs, but

above 0 dB the tendency is the same as when N was varied.

It should be kept in mind, that when no peak was found in the

search interval, the perturbation was set to zero, which is seen

to have an influence on the result at low iSNRs as well as for

the APES filter at N = 50.

The performance measures according to the perturbations

found in Fig. 1 are shown in Fig. 2 along with the perfor-

mance of a filter based on the harmonic signal model, i.e.,

∆l = 0 ∀ l. NLS-I, NLS-II and Capon perform equally well

and better than both APES and the harmonic signal model

when the sample length is larger than 50 and the iSNR is

larger than −10 dB. The similarity between the performance

using NLS-I, NLS-II and Capon means that it is not crucial

to use an estimation method for the perturbations that reaches

the CRB. The signal distortion is clearly decreased when tak-

ing perturbations into account. When the perturbations are

estimated with NLS-I, NLS-II and Capon, ξsr(h) is very close

to 0 dB independently of N and iSNR, whereas it is increas-

ing as a function of bothN and iSNR when a harmonic signal

model is used. The oSNR(h) is also increased using the per-

turbed signal model. When using NLS-I instead of the har-

monic signal model, the gains in oSNR(h) are 3.1 dB and

10.5 dB at iSNRs of 0 dB and 10 dB, respectively. The per-

formance on real speech is shown in Fig. 3 as a function of

the iSNR. The tendency here is the same as in the case of

synthetic signals, and the perturbed signal model leads to im-

provements in both ξsr(h) and oSNR(h). The speech signal

is more distorted than the synthetic signal in Fig. 2, but, nev-

ertheless, when using NLS-I, ξsr(h) is lowered by 2.1 dB and

3.4 dB compared to the harmonic signal model at 0 dB and

10 dB, respectively. The gain in oSNR(h) is 2.2 dB and 3.8

dB at the same iSNRs.
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Fig. 1. Mean squared error (MSE) of the estimated perturba-

tions as a function of (a) N and (b) iSNR.

5. CONCLUSION

The influence of using the perturbed signal model as a ba-

sis for filtering of voiced speech signals was investigated and

evaluated by means of the signal reduction factor and output

signal-to-noise ratio. It was found that the performance was

increased for input signal-to-noise ratios above approximately

−10 dB when compared to the harmonic signal model. The

perturbed and the harmonic signal models perform equally

well for input signal-to-noise ratios below −10 dB. The per-

turbed signal model definitely has a potential of increasing the

quality of the filtered speech signal, but with the perturbations

found by grid searches, it comes with the cost of increased

complexity in the estimation process.
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