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ABSTRACT

In this paper, we propose a strategy for fusing clustering maps

obtained with different remote sensing sources. Dempster-

Shafer (DS) Theory is a powerful fusion method that allows

to combine classifications from different sources and handles

ignorance, imprecision and conflict between them. To do so,

it attributes evidences (weights) to different hypothesis repre-

senting single or unions of classes. We introduce a fully unsu-

pervised evidence assignment strategy exploiting the entropy

among cluster memberships. Ambiguous pixels get stronger

evidences for union of classes to better represent the uncer-

tainty among them. On two multisource experiments, the pro-

posed Entropy-based Dempster-Shafer (EDS) performs best

along the different fusion methods with VHR images, when

the single class accuracies from each source are complemen-

tary and one of the sources shows low overall accuracy.

Index Terms— Dempster-Shafer, multisource fusion, un-

supervised, entropy, fuzzy C-Means, remote sensing

1. INTRODUCTION

Classification in remote sensing can provide thematic infor-

mation on large regions (e.g. spatial distribution of forest

against urban areas). Many sources exist nowadays, so that

images from different sensors are often available over the

same region at a similar time period. In the optical domain,

the images are redundant, but show complementarities that

can be exploited. In the last decade, the fusion of remote

sensing images has been intensely investigated, in particular

under the umbrella of pansharpening, which is the fusion

of high spatial resolution images (panchromatic) with multi-

spectral or hyperspectral images [1]. Fusion of different clas-

sifiers [2] or of classifications from multiple sources [3] have

also received wide attention in remote sensing. The comple-

mentarity between images with different spectral bands and

sensitivity can lead to better class discrimination and more

accurate classification maps after their fusion.

Multisource fusion can be performed at different levels,

either at the pixel or features level or as a decision fusion tool,

thus combining several single-source classification maps [4].

The Dempster-Shafer (DS) fusion methodology is of the lat-

ter type. DS theory of evidence is a powerful fusion method

having the advantage of handling ignorance (imprecision and

uncertainty) and conflict between the sources [5], [6]. DS

theory attributes evidences (weights) to a set of different hy-

pothesis, being single classes or unions of classes. In case of

ambiguity, higher weights are given to the union of several

classes than on a single class. This potentially allows to un-

veil the ambiguity after the combination with another source.

The DS theory has been successfully applied to the segmen-

tation fusion of biomedical images [7] and the classification

fusion of remote sensing images [4], [8].

While the DS theory for fusion is well established, the

way of deriving the evidences from the classification varies.

Some methods are theoretically founded such as those pro-

posed by Dubois and Prade [9] to derive evidences from like-

lihood and probability according to the least Commitment

Principle, and by Bloch [10] to allocate evidences from math-

ematical operators, and that of Mercier et al [11] to discount

evidences in a contextual way. For instance, evidences can

also be assigned using a validation set if an accurate ground

truth is available [12].

When such ground reference is not available, one must

recour to unsupervised assignment. In this case, the assign-

ment of evidences to the different hypothesis can be derived

from cluster memberships [13, 4]. The ambiguity among the

two highest memberships [14] and a threshold separating high

from low ambiguity situations [7] have been considered in the

past to assign evidences to unions of classes. However, and

for more than two classes, the ambiguity should be defined in

a continuous way and not only by considering two situations

(low or high ambiguity). Moreover, when using the current

approaches, it is difficult to set a threshold which is common

to all pixels, because ambiguity can also vary locally.

In this paper, we tackle the aforementioned weaknesses

in the context of unsupervised classification, by considering

local assignments of DS evidences. The ambiguity threshold

is replaced by an ambiguity factor weighting the evidences,
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based on the entropy among the fuzzy memberships. This

provides a natural multiclass measure to assess uncertainty

among several classes.

2. FUZZY CLUSTERING

Let us consider the pixels x
s(j) ∈ R

ds

of two co-registered

images from different sensors s with associated labels y(j) =
Ci, 1 ≤ i ≤ N corresponding to the N different classes.

Fuzzy cluster memberships µij ∈ [0, 1] are obtained from

the Fuzzy C-Means (FCM) algorithm [13]. The clusters cen-

ters are matched before the fusion in order to remain coher-

ent among the sources. We observed that the FCM clustering

solutions were very stable regarding the initialization in our

experiments.

3. DEMPSTER-SHAFER THEORY FOR DATA

FUSION

The Dempster-Shafer theory has the advantage of consider-

ing imprecision and conflict between multisource informa-

tion. The different hypothesis considered in the DS theory

can even be union of classes. This can be seen as the ability

of representing ”mixed” pixel, resulting from a source unable

to distinguish certain classes. Since we aim at distinguishing

only the N classes of interest, the unions of classes are not

considered as potential final classes; however, the union of

classes are considered in the fusion scheme to sort the am-

biguous cases, that may be solved by the information brought

by another source.

The evidences are the weights assigned to the hypothesis

Hi, corresponding to the single class and union of classes.

The evidences ms(Hi) for a source s follow these conditions:

0 ≤ ms(Hi) ≤ 1, ms(∅) = 0,
N
∑

i=1

ms(Hi) = 1 (1)

which are similar to standard probabilities properties.

The fusion of the set of evidences ms(Hi) from each source

(here s = 1, 2) is realized by the normalized orthogonal sum

of the masses (2).

m(Hi) =
1

1−K

∑

Hp∩Hq=Hi

m1(Hp) ·m
2(Hq) (2)

K =
∑

Hp∩Hq=∅

m1(Hp) ·m
2(Hq) (3)

In other words, all the product of evidences between the

sources contributing to an hypothesis (Hi) are summed. The

union of classes are not considered as a possible final class.

K represents the conflicts between the sources.

After fusion of the evidences, a decision rule is used to de-

fine the final class assignment. In the literature, there are sev-

eral decision rules such as maximum of plausability or credi-

bility [8], [6]. The maximum of credibility, equivalent to the

maximum of evidence, is chosen to result in labels being the

most probable class [15].

y(j) = argmax
Ci
{m(Ci)(j), 1 ≤ i ≤ N} (4)

4. UNSUPERVISED EVIDENCE ASSIGNMENT

The unsupervised determination of evidences is based on the

fuzzy membership values without requiring any groundtruth

information. The union of classes allows to represent a cer-

tain ambiguity between classes. Depending on the ambiguity

among the membership values, a proportional weight will be

set on the evidences representing the corresponding union of

classes.

Previously, in order to weight accordingly the evidence

representing the union of the two classes k and l, the ambigu-

ity has been defined as the absolute difference among the two

highest membership k and l:
∣

∣µkj − µlj

∣

∣ [7, 14]. This was

justified by the use of only gray level intensities of the im-

ages, reducing the problem of ambiguity to a problem involv-

ing maximally two clusters. The ambiguity was characterized

as high or low with respect to a user-defined threshold ε [7].

4.1. Ambiguity factor based on entropy

It is difficult to set a threshold on the ambiguity that is valid

for all pixels: such a threshold would not account for situa-

tions where the ambiguity is among several memberships and

be sensitive for ambiguity around ǫ. We propose an ambigu-

ity factor weighting the different evidences and avoiding the

recourse to a binary threshold. The ambiguity is based on the

entropy of the memberships distribution. The entropy reflects

the internal organization of the memberships: a flat distribu-

tion will have a high entropy, a peaked distribution will have

a low entropy. The ambiguity factor ρ(j) is defined as the

normalized entropy for pixel j:

ρ (j) =

∑N

i=1
µij ln(µij)

ρ
max

(5)

where the maximal entropy is ρ
max

= ln(N), met when all

the memberships are equal: µij = 1/N .

4.2. Smooth evidence assignment

Inspired by Boudraa et al. [7] on the evidence assignment

from the membership distribution, the ambiguity factor ρ(j)
is inserted to weight the different evidences and to avoid hav-

ing a global binary threshold. The different evidences for

the single classes – Eq. (6) – and for the union of classes –

2
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Eqs. (7) and (9) – are weighted by the entropy-based ambigu-

ity factor ρ(j).
The evidences for the single classes are defined as

m(Ci)(j) = [1−mk̄(j)−mkl(j)−mk̄l(j)] · µij (6)

When it is not ambiguous, one membership is signif-

icantly more important and the others can be grouped in

mk̄(j), which is the evidence of the union of all memberships

except the highest membership defined as

mk̄(j) = m(
N
⋃

i=1

i 6=k

Ci)(j) = (1−ρ (j)) ·
N
∑

i=1

i 6=k

µij ·(β−µij) (7)

with β = max
1≤k≤N

(µkj). This evidence will be down-

weighted in case of high ambiguity among the class member-

ships since it would become less relevant.

mkl(j) and mk̄l(j) are the evidences related to the two

highest memberships, corresponding to the classes Ck and Cl.

They are defined as follows

mkl(j) = m(Ck ∪ Cl)(j) = ρ (j) · α · (µkj + µlj)k 6=l (8)

mk̄l(j) = m(
N
⋃

i=1

i 6=k,i 6=l

Ci)(j) = ρ (j) · α ·
N
∑

i=1

i 6=k,i 6=l

µij (9)

where α = β − min
1≤k≤N

(µkj). These evidences are made

proportional to the ambiguity factor ρ(j). They will be down-

weighted in the case of low (or no) ambiguity between mem-

berships, and become significant when ambiguous.

Finally, the evidence conditions of Eq. (1) are respected

through adequate normalization of the single class evidences

m(Ci) in Eq. (6). The mass of the union of all the classes is

null under the hypothesis that the clustering function avoids

creating regions where all classes overlap. The union of more

than the two highest memberships could be taken into ac-

count, but this would lead to an extensive number of evi-

dences with very low weights. This assignment of evidences

boils down to the one presented in [7] if ρ(j) is set to 1 or 0,

in case of high or low ambiguity respectively.

5. EXPERIMENTS

The proposed Entropy-based Dempster-Shafer (EDS) fusion

scheme has been tested on two optical remote sensing cases:

The Geneva dataset consists in a SPOT image with a

spatial resolution of 20m and 3 spectral bands (Near in-

frared (NIR), Red (R) and Green (G) spectral channels), and

a Landsat TM image with a spatial resolution of 30m and

6 spectral bands (from 450 nm to 2350 nm), acquired over

Geneva, Switzerland, in 1990 and 1988 respectively. Images

LAND SPOT STAC SUM PROD ENT ADS EDS SDS

OA 76.83 74.18 77.59 78.41 78.85 78.17 78.49 78.83 78.90

κ 0.622 0.584 0.637 0.645 0.650 0.642 0.645 0.647 0.644

Water 0.856 0.763 0.841 0.829 0.832 0.827 0.831 0.830 0.824

Farm. 0.199 0.190 0.187 0.223 0.226 0.220 0.224 0.221 0.230

Veg. 0.760 0.805 0.813 0.811 0.814 0.810 0.811 0.811 0.769

Urban 0.809 0.779 0.814 0.820 0.824 0.817 0.820 0.824 0.828

Table 1. Average results for 3-fold cross-validation of the

“Geneva” images

IKON SPOT STAC SUM PROD ENT ADS EDS SDS

OA 52.52 71.15 72.61 72.07 71.92 72.16 73.17 73.69 74.96

κ 0.385 0.622 0.643 0.633 0.632 0.635 0.648 0.656 0.662

Water 0.154 0.940 0.661 0.886 0.870 0.880 0.897 0.874 0.767

Veg. 0.519 0.446 0.482 0.536 0.508 0.534 0.536 0.524 0.631

Farm. 0.130 0.006 0.395 0.071 0.142 0.122 0.170 0.193 0.009

Urban 0.765 0.922 0.952 0.905 0.909 0.905 0.907 0.904 0.880

Rice. 0.603 0.507 0.728 0.536 0.584 0.554 0.560 0.639 0.699

Table 2. Average results for 3-fold cross-validation of the

“Tana” images

are 512×512 pixels after co-registration on a 20m pixel grid.

A ground truth of 45311 samples is divided in four classes:

1. Water, 2. Farming, 3. Vegetation, 4. Urban (buildings,

ground). First row of Fig. 3 illustrates the images.

The Tana dataset consists in a SPOT image with a spatial

resolution of 2m50 and 3 spectral bands (NIR-R-G), and an

Ikonos image with a spatial resolution of 1m and the 3 visible

spectral bands (R-G-B), both taken in july 2006 over Antana-

narivo, Madagascar. Images are 2000×2000 pixels after co-

registration on a 2m50 pixel grid. A ground truth with 4243

samples collected and divided in five classes: 1. Water, 2.

Ricefield, 3. Vegetation (mango, eucalyptus, fir), 4. Farming,

5. Urban (buildings, ground). First row of Fig. 4 illustrates

the images.

The proposed EDS fusion method is compared with 1) the

Ambiguity threshold (ǫ = 0.15) Dempster-Shafer (ADS) [7],

2) the Supervised Dempster-Shafer (SDS) [12], 3) the clus-

tering of the stacked sources (STAC) and 4) other standard

fusion methods including sum (SUM), product (PROD) or

entropy-weighted product of fuzzy memberships (ENT). Ta-

bles 1 and 2 summarize the overall accuracy (OA), Cohen’s

Kappa (κ) and per class accuracies for the two datasets av-

eraged over a three-fold validation, one-fold for validation of

SDS and the remaining two-folds for testing the final classifi-

cation. Figures 1 and 2 report the standard deviations for the

two datasets. Classification maps before and after fusion are

shown in Figs. 3 and 4.

In the Geneva case study, the classification results on

Landsat and SPOT images show few complementarity be-

tween class accuracies. The spatial difference (30m and 20m

of spatial resolutions respectively) does not bring much com-

plementarity. The standard fusion methods show the same

values of accuracy than the unsupervised DS fusions, with the

3
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Fig. 1. κ results (3-fold cross-validation) for Geneva.

IKONOS SPOT STAC SUM PROD ENT ADS EDS SDS
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Fig. 2. κ results (3-fold cross-validation) for Tana.

standard product fusion giving slightly better accuracies. The

lack of complementarity between the source classes could not

allow the unsupervised DS entropy-based fusion to produce

better results but still achieves better κ than single source

clusterings and stacked sources clustering.

In Tana, complementarity is observed: the classification

result on the Ikonos image is much lower than on the SPOT

image. The Ikonos image has wavy water surfaces which

makes the clustering harder for this source and lead to poor

results. In both images the accuracy obtained for the class

”Farming” is very low, inherently to its diversity (contains

spectral signatures corresponding to different types of crops).

The standard fusion methods are simply finding a trade-

off between the two clustering and result in slightly lower ac-

curacies compared to the clustering on the stacked spectral

bands.

The proposed EDS outperforms all the other fusion meth-

ods and reaches the accuracy of the supervised fusion (SDS).

This shows the great potential with Very-High Resolution

(VHR) images. We remember that contrarily to the ambigu-

ity threshold approach (ADS) [7], EDS does not need any

pre-defined parameters. The Supervised DS fusion method

exagerates the tendencies, i.e SDS pushes up the classes hav-

ing a high value of accuracy in one of the images, leaving

aside some other classes with low accuracies. Whereas the

methods ADS and EDS give more homogeneous accuracies

through the classes. This difference is mostly due to the

global assignment of evidences (per class) for SDS, in con-

trary to the local assignment of evidences (per pixel) of the

proposed method. EDS allows to handle very complementary

sources and exploit their respective ambiguities.

6. CONCLUSION

We propose an approach for the fusion of clustering from

multiples sources, based on an unsupervised assignment of

Dempster-Shafer evidences, generalizing the treatment of am-

biguity. Instead of a user-defined ambiguity threshold [7] to

(a) LAND image (b) SPOT image

(c) FCM, LAND (0.622) (d) FCM, SPOT (0.584)

(e) SDS (0.644) (f) Proposed EDS (0.647)

ground truth: water vegetation farming urban ricefield

Fig. 3. Images and classification maps for the Geneva dataset

define if a sample is highly ambiguous or not, our method de-

fines an ambiguity factor based on the local entropy among

the cluster memberships. Ambiguous pixels, representing the

mixture of classes, are given stronger evidences representing

the union of classes. This increases the possibility of unveil-

ing the ambiguity among similar classes thanks to the other

source. Our Entropy-based Dempster-Shafer fusion method

(EDS) performs better than standard fusion methods and com-

petes with supervised Dempster-Shafer fusion schemes. This

confirms the benefits of our fully unsupervised method, re-

calling that no user-defined parameters are set. It shows par-

ticularly better performance with Very-High Resolution im-

ages where sources present more diversity and complemen-

tarity among the classes. Further perspectives are on develop-

ing more grounded evidence assignments and exploring other

types of clustering [16] and the application of such fusion to

different modalities such as Synthetic Aperture Radar (SAR)

images or hyperspectral images.
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(a) IKONOS image (b) SPOT image

(c) FCM, IKONOS (0.385) (d) FCM, SPOT (0.622)

(e) SDS (0.662) (f) Proposed EDS (0.656)

Fig. 4. Images and classification maps for the Tana dataset (a

600× 600 subset only is shown)
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