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ABSTRACT

Video background subtraction is an essential task in computer
vision for detecting moving objects in video sequences. In
this paper, we propose a novel Bayesian nonparametric sta-
tistical approach to subtract video background. The proposed
approach is based on a mixture of Dirichlet processes with
Dirichlet distributions, which can be considered as an infi-
nite Dirichlet mixture model. Compared to other background
subtraction approaches, the proposed one has the advantages
that it is more robust and adaptive to dynamic background,
and it has the ability to handel multi-modal background dis-
tributions. Moreover, thanks to the nature of nonparametric
Bayesian models, the determination of the correct number of
components is sidestepped by assuming that there is an infi-
nite number of components. Our results demonstrate the mer-
its of the proposed approach.

Index Terms— Background subtraction, Dirichlet pro-
cess, mixture models, Dirichlet distribution, variational
Bayes.

1. INTRODUCTION

Video background subtraction is the process of identifying
moving foreground objects from the background in a se-
quence of video frames. It is an important task in computer
vision and has been applied in many applications involving
video surveillance, traffic monitoring, human motion analy-
sis and object tracking. Video background subtraction is a
considerable challenging problem due to the dynamic nature
of video backgrounds such as lighting changes, rain, moving
leaves and shadows cast by moving objects. In recent years,
much research has been devoted to the study of video back-
ground subtraction and many techniques have been proposed,
such as: high level region analysis [1], kernel density esti-
mation [2], Markov random fields [3], and hidden Markov

The completion of this research was made possible thanks to the Natural
Sciences and Engineering Research Council of Canada (NSERC).

models [4]. A brief review of background subtraction tech-
niques can be found in [5].
Among various approaches to video background subtraction,
finite mixture models have the advantage to handel multi-
modal background distributions and have shown promis-
ing results in several recent works [6, 7, 8]. However, all
the aforementioned mixture modeling approaches have to
address the problem of determining the correct number of
mixture components (either manually selected or determined
by adopting some selection criteria). This difficulty can be
solved in an elegant way by assuming that the number of
components is countably infinite using a probabilistic struc-
ture known as Dirichlet process [9]. The Dirichlet process
belongs to Bayesian nonparametric models in which the sizes
of models are allowed to grow with data size. Another is-
sue regarding background subtraction techniques using finite
mixtures is that most of the works make the Gaussian as-
sumption [6, 8], which means that each pixel in a frame is
represented as a mixture of Gaussians. Unfortunately, this
assumption is not realistic in practice and recent works have
shown that other distributions, such as the Dirichlet distribu-
tion [10, 11] may provide a better modeling performance in
the case of non-Gaussian data, and in particular normalized
count data (i.e., proportion vectors) which arise in a wide va-
riety of applications such as text, image and video modeling.
In this work, we attempt to propose a novel approach to video
background subtraction through an online infinite Dirich-
let mixture model. The main contributions of the paper are
threefold. Firstly, we extend the finite Dirichlet mixture
model to the infinite case using Dirichlet process mixture
framework with a stick-breaking construction. Secondly, an
online (or incremental) variational learning algorithm is de-
veloped to learn the proposed model. Lastly, we apply the
proposed model to address the problem of video background
subtraction and compare our approach with other existing ap-
proaches. The rest of this paper is organized as follows: Sec-
tion 2 presents our infinite Dirichlet mixture model. Section
3 describes our online variational Bayes framework for learn-
ing the proposed model. Section 4 presents the methodology
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that we have adopted for subtracting video backgrounds. Ex-
perimental results are demonstrated in Section 5. Section 6
closes this paper with conclusions.

2. THE INFINITE DIRICHLET MIXTURE MODEL

In this work, the finite Dirichlet mixture model is extended to
the infinite case through a Dirichlet process. Suppose that a
given D-dimensional random vector !X = (X1, . . . , XD) is
drawn from a mixture of Dirichlet distributions with infinite
components as

p( !X|!π, !α) =
∞∑

j=1

πjDir( !X|!αj) (1)

where !π denotes the mixing coefficients which are positive
and sum to one. !αj = (αj1, . . . , αjD) are the positive param-
eters of the Dirichlet distribution Dir( !X|!αj) which is associ-
ated with component j, where Dir( !X|!αj) is defined by

Dir( !X|!αj) =
Γ(

∑D
l=1 αjl)

∏D
l=1 Γ(αjl)

D∏

l=1

X
αjl−1

l (2)

where
∑D

l=1
Xl = 1,Xl > 0 for l = 1, . . . , D.

In our work, the Dirichlet process is represented using a stick-
breaking construction [12], such that the mixing weights πj

are constructed by recursively breaking a unit length stick into
an infinite number of pieces as πj = λj

∏j−1

s=1
(1 − λs). The

stick breaking variable λj is distributed according to λj ∼
Beta(1, β), where β is a positive real number and is the con-
centration parameter of the Dirichlet process.
Given an observed data set X = ( !X1, . . . , !XN ), we intro-
duce a vector !Z = (Z1, . . . , ZN) as the mixture component
assignment variable, in which each element Zi takes an inte-
ger value j denoting the component from which !Xi is drawn.
The marginal distribution over !Z can be specified as

p(!Z|!λ) =
N∏

i=1

∞∏

j=1

[
λj

j−1∏

s=1

(1− λs)

]1[Zi=j]

(3)

where 1[·] is an indicator function which has the value 1 when
Zi = j and 0 otherwise. The following step is to intro-
duce prior distributions over random variables !λ and !α in our
Bayesian framework. According to the stick breaking con-
struction, the prior distribution of !λ is a specific Beta dis-
tribution as p(!λ|!β) =

∏
∞

j=1
Beta(1, βj). Furthermore, we

assume that the Dirichlet parameters !α are statistically inde-
pendent and for each parameter αjl, the Gamma distribution
G(·) is adopted to approximate the conjugate prior of !α as
p(!α) =

∏
∞

j=1

∏D
l=1

G(αjl|ujl, vjl), where ujl and vjl are hy-
perparameters, subject to the constraints ujl > 0 and vjl > 0.

3. MODEL LEARNING

In this work, we adopt an online learning algorithm proposed
in [13] to learn the proposed infinite Dirichlet mixture model

through variational Bayes [14]. It contains two phases: build-
ing phase and compression phase. The goal of the model
building phase is to inference the current optimal mixture
model, while the target of the compression phase is to de-
termine which mixture component that groups of data points
should be assigned to. In this algorithm, data points can be
sequentially processed in small batches where each one may
contain one or more data points.

3.1. Model Building Phase

Given an observed data set X , we define Θ = {!Z, !α,!λ}
as the set of random variables. The main goal of varia-
tional Bayes is to find a proper approximation q(Θ) for
the posterior distribution p(Θ|X ), which is achieved by
maximizing the free energy F(X , q), where F(X , q) =∫
q(Θ) ln[p(X ,Θ)/q(Θ)]dΘ. Motivated from [15], we trun-

cate the variational distribution q(Θ) at a valueM , such that
λM = 1, πj = 0 when j > M , and

∑M
j=1

πj = 1, where
the truncation level M is a variational parameter which can
be freely initialized and will be optimized automatically dur-
ing the learning process [15]. Moreover, in order to achieve
tractability, we assume that the approximated posterior dis-
tribution q(Θ) can be factorized into disjoint tractable factors
as: q(Θ) = [

∏N
i=1

q(Zi)][
∏M

j=1

∏D
l=1

q(αjl)][
∏M

j=1
q(λj)].

Then, the free energy can be maximized with respect to q(!Z),
q(!α) and q(!λ) with a guaranteed convergence. Thus, we can
obtain the following solutions for the variational factors:

q(!Z) =
N∏

i=1

M∏

j=1

r
1[Zi=j]
ij , q(!α) =

M∏

j=1

D∏

l=1

G(αjl|u
∗
jl, v

∗
jl) (4)

q(!λ) =
M∏

j=1

Beta(λj |aj , bj) (5)

where we have defined

rij =
exp(ρij)∑M
j=1 exp(ρij)

(6)

ρij = R̃j +
D∑

l=1

(ᾱjl − 1) lnXil +
〈
lnλj

〉
+

j−1∑

s=1

〈
ln(1− λs)

〉
(7)

u∗
jl = ujl +

N∑

i=1

rijᾱjl

[
Ψ(

D∑

l=1

ᾱjl)−Ψ(ᾱjl) + Ψ′(
D∑

l=1

ᾱjl)

×
D∑

s%=l

ᾱjs(
〈
lnαjs

〉
− ln ᾱjs)

]
(8)

v∗jl = vjl −
N∑

i=1

rij lnXil (9)

aj = 1 +
N∑

i=1

〈Zi = j〉, bj = βj +
N∑

i=1

M∑

s=j+1

〈Zi = s〉 (10)

where Ψ(·) is the digamma function, and 〈·〉 is the expec-
tation evaluation. Note that, R̃j is the approximated lower
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bound ofRj , whereRj =
〈
ln[Γ(

∑D
l=1

αjl)/
∏D

l=1
Γ(αjl)]

〉
.

Since a closed-form expression cannot be found for Rj ,
The second-order Taylor series expansion is applied to
find a lower bound approximation R̃j . The expected val-
ues in the above formulas are given by 〈Zi = j〉 = rij ,
ᾱjl = 〈αjl〉 = u∗

jl/v
∗

jl,
〈
lnλj

〉
= Ψ(aj) − Ψ(aj + bj),〈

ln(1 − λj)
〉

= Ψ(bj) − Ψ(aj + bj), and
〈
lnαjl

〉
=

Ψ(u∗

jl)− ln v∗jl.
After convergence, the observed data points are clustered into
M groups according to corresponding responsibilities rij
through (6). These newly formed groups of data points are
also denoted as “clumps” according to [13]. Following [13],
these clumps are subject to the constraint that all data points
!Xi in the clump c share the same q(Zi) ≡ q(Zc) which is a
key factor in the following compression phase.

3.2. Compression Phase

In the compression phase, we attempt to determine clumps
that possibly belong to the same mixture component while
taking into account future arriving data. Suppose that we have
already observed N data points, and our goal is to make an
inference at some target time T where T ≥ N . This is ful-
filled by scaling the current observed data to the target size
T , which is equivalent to using the variational posterior dis-
tribution of the observed data N as a predictive model of the
future data [13]. Therefore, we can obtain the modified free
energy for the compression phase as the following

F =
M∑

j=1

D∑

l=1

〈
ln

p(αjl|ujl, vjl)
q(αjl)

〉
+

M∑

j=1

〈
ln

p(λj |βj)
q(λj)

〉

+
T

N

∑

c

|nc| ln
M∑

j=1

exp(ρcj) (11)

where T
N
is the data magnification factor and |nc| denotes the

number of data points in clump c. The corresponding update
equations for maximizing this free energy function are

rcj =
exp(ρcj)∑M
j=1 exp(ρcj)

(12)

ρcj = R̃j +
D∑

l=1

(ᾱjl − 1) ln〈Xcl〉+ 〈lnλj〉+
j−1∑

s=1

〈ln(1− λs)〉

(13)

u∗
jl = ujl +

T

N

∑

c

|nc|rcj

[
Ψ(

D∑

l=1

ᾱjl) + Ψ′(
D∑

l=1

ᾱjl)

×
D∑

s%=l

ᾱjs(
〈
lnαjs

〉
− ln ᾱjs)−Ψ(ᾱjl)

]
ᾱjl (14)

v∗jl = vjl −
T

N

∑

c

|nc|rcj ln〈Xcl〉 (15)

aj = 1 +
T

N

∑

c

|nc|〈Zc = j〉 (16)

bj = βj +
T

N

∑

c

|nc|
M∑

s=j+1

〈Zc = s〉 (17)

where 〈Xcl〉 denotes average over all data points contained
in clump c. In the compression phase, we first hard assign
each clump or data point to the component with the highest
responsibility rcj obtained from the model building phase as

Ic = argmax
j

rcj (18)

where {Ic} denote which component the clump (or data
point) c belongs to in the compression phase. Next, we cycle
through each component and split it along its principal com-
ponent. Then, we refine this split by updating Eqs. (12)∼(17).
After convergence criterion is reached for refining the split,
the clumps are then hard assigned to one of the two candi-
date components. Among all the potential splits, we choose
the one that results in the largest change in the free energy
(Eq. (11)). The splitting process repeats itself until a stop-
ping criterion is met. Based on [13], the stoping criterion
for the splitting process can be expressed as a limit on the
amount of memory required to store the components. In our
work, the component memory cost for the mixture model is
MC = (D − 1)Nc, where Nc is the number of components.
We then define an upper limit on the component memory
cost C, and the compression phase stops when MC ≥ C.
Therefore, the computational time and the space requirement
is bounded in each learning round. After the compression
phase, the currently observed data points are discarded while
the resulting components can be treated in the same way as
data points in the next round of leaning. The incremental
variational inference for infinite Dirichlet mixture model is
summarized in Algorithm 1.

Algorithm 1
1: Choose the initial truncation levelM .
2: Initialize the values for hyper-parameters ujl, vjl and βj .
3: Initialize the values of rij byK-Means algorithm.
4: whileMore data to be observed do
5: Perform the model building phase through Eqs. (4)∼(5).
6: Initialize the compression phase using Eq. (18).
7: whileMC ≥ C do
8: for j = 1 toM do
9: if evaluated(j) = false then
10: Split component j and refine this split using

Eqs (12)∼(17).
11: ∆F(j) = change in Eq. (11).
12: evaluated(j) = true.
13: end if
14: end for
15: Split component j with the largest value of∆F(j).
16: M = M + 1.
17: end while
18: Discard the current observed data points.
19: Save resulting components into next learning round.
20: end while

3
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4. VIDEO BACKGROUND SUBTRACTION

We tackle the problem of video background subtraction as
pixel-level evaluations by following the idea proposed by
[6], in which each pixel is represented by a mixture of den-
sity functions. The pixel-based approaches for subtracting
background contains decision whether the pixel belongs to
the background or some foreground object. In this section,
we propose a novel video background subtraction approach
based on the proposed online infinite Dirichlet mixture model
(OnInDMM). Assume we have observed a frame X which
contains N pixels, such that X = { !X1, . . . , !XN}. Each
pixel !Xi is modeled as a mixture of infinite Dirichlet distri-
butions: p( !Xi|!π, !α) =

∑
∞

j=1
πjDir( !Xi|!αj), where !Xi is the

RGB color (three-dimensional) or the intensity value (one-
dimensional) of the pixel.
Our background subtraction methodology can be summarized
as follows: First, the pixel values in an observed frame are
normalized to the unit sum as a preprocessing step. Next, the
background model is learnt using the proposed OnInDMM
via variational Bayes. Notice that, within this mixture model,
some of the mixture components model the scene background
while others model the foreground objects. Therefore, the
final step is to determine whether !Xi is a foreground or back-
ground pixel. In our work, we adopt the assumption that a
mixture component is considered to belong to background
if it occurs frequently (high πj ) and does not vary much
(low standard deviation σj ). So, after ordering all the esti-
mated components based on the ratio πj/‖σj‖, the first B
components are chosen as background components, where

B = argmin
b

b∑

j=1

πj > Λ (19)

whereΛ is a threshold that represents the minimum portion of
the data that should be accounted for by the background, and
the rest of the components are defined as foreground objects.
Therefore, we can perform background subtraction for an ob-
served frame by determining if the testing pixel !Xi belongs
to any of the componentsB.

5. EXPERIMENTAL RESULTS

Four public available video sequences with different charac-
teristics have been adopted for evaluating the performance of
the proposed background subtraction approach. These video
sequences were selected to test the efficiency of our algorithm
under diverse scenarios. These sequences are: 1) Box: This
sequence shows a red box moving around by a hand with a
static background; 2) Plastic drum: The sequence is about a
plastic drum floating on the surface of sea; 3) Person: A per-
son walks in front a swaying tree; 4)Cafeteria: The sequence
consists of several minutes of an overhead view of a cafeteria.
In our experiments, we initialize the truncation level M as

15. The initial values of the hyperparameters ujl, vjl, and βj

are set to 1, 0.01 and 0.1, respectively. Since our approach is
pixel-based, foreground objects detection is thus considered
as binary classification of each pixel, resulting in a segmen-
tation mask. The ground truth frames are generated by man-
ually highlighting all the moving objects in sequences. The
results of representative foreground mask generated by the
proposed OnInDMM for each video sequence can be seen in
Fig. 1, where the threshold Λ is set to 0.75. The performance

Box Plastic drum Person Cafeteria

Fig. 1. Foreground masks generated by OnInDMM for each
video sequence.

of the classification is measured by recall and precision, and
are defined as

Recall =
number of correctly identified foreground pixels
number of foreground pixels in ground truth

Precision =
number of correctly identified foreground pixels

number of foreground pixels detected

In our case, the results of recall and precision are based on the
averages over all the measured frames. A trade off needs to
be considered between recall and precision: an increase in re-
call by detecting more foreground pixels causes a decrease in
precision. Thus, we should attempt to maintain as high recall
value as possible without sacrificing too much precision.

For comparison, we have also applied two other well-
established background subtraction algorithms on the same
data sets namely the online finite Gaussian mixture model
(OnGMM) proposed in ([6]), and the online finite Dirichlet
mixture model (OnDMM) proposed in [11]. Since the number
of components has to be specified manfully for the OnGMM
approach, we set it to 5 in our experiment. Figure 2 shows the
comparison results in terms of precision-recall graph by vary-
ing the threshold Λ for each data set. As we can see clearly,
the proposed OnInDMM provides the best precision and re-
call results for each video sequence. This is because infi-
nite mixture models can provide a more accurate and adaptive
background model than finite ones.
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Fig. 2. Precision-recall graph for each video sequence.

6. CONCLUSION

In this paper, we developed a new approach to the problem
of video background subtraction based on an online infinite
Dirichlet mixture model. The model is learned in a variational
way. The proposed approach is more robust to background
changes (such as the variation of illumination or weather con-
ditions) and has the merit that the difficulty of determining the
number of components is avoided. The experimental results
have shown the effectiveness of the proposed approach.
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