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ABSTRACT 
 

This paper derives the "constrained" maximum likelihood 

(ML) estimators and the Cramér-Rao Lower Bounds 

(CRLB) for the scatter matrix of Complex Elliptically 

Symmetric distributions and compares them in the particular 

cases of complex Gaussian, Generalized Gaussian (GG) and 

t-distributed observation vectors. Numerical results confirm 

the goodness of the ML estimators and the advantage of a 

constraint on the matrix trace for small data size.  
 

Index Terms— Matrix estimation, CRLB, complex 

elliptically distribution. 
 

1. INTRODUCTION 
 

Complex Elliptically Symmetric (CES) distributions 

constitute a wide family of distributions whose complex 

Gaussian, Cauchy, Generalized Gaussian, compound-

Gaussian, such as K-distribution and complex-t, are 

particular cases. The CES distributions are largely applied to 

model the disturbance in many areas, such as radar, sonar 

and communications [1-3]. In those applications where 

adaptive signal processing is performed, for channel 

estimation or target detection, the estimation of the 

disturbance covariance matrix is often required [4-7] and the 

issue of matrix estimation performance must be addressed. 

This paper focuses on the Maximum Likelihood (ML) 

estimate of the covariance matrix when the data vector is 

CES distributed and introduces its Cramér-Rao Lower 

Bounds (CRLBs). For a detailed and clear review of the 

CES model we refer the readers to the recent paper by Ollila 

et al. [8] and to the many references therein. Here we 

summarize only the main properties necessary for the 

following derivations.  

A complex N-dimensional vector z is said CES distributed, 

in shorthand notation  , ,NCE gz μ Σ , if its probability 

density function (PDF) is of the form 
 

      1 1

,( )
H

N gp C g
   z Σ z μ Σ z μ  (1) 

 

where g() is the density generator, ,N gC  is a normalizing 

constant, μ  is the mean vector and Σ  is the normalized 

covariance matrix such that  tr NΣ ; for a vector 

extracted from a stationary process this means 
, 1i i Σ  for 

1, ,i N . Matrix Σ  is also called the scatter matrix. It is 

important to observe that for some CES distributions the un-

normalized covariance matrix { }HEM zz  does not exist, 

but the scatter matrix Σ  is still well defined. Based upon the 

Stochastic Representation Theorem reported in [8] any 

 , ,NCE gz μ Σ , with ( )rank k N Σ , admits the 

stochastic representation d R z μ Au , where the non-

negative random variable R is called the modular variate, u 

is a k-dimensional vector uniformly distributed on the unit 

hypersphere with k-1 topological dimensions such that 

1H u u , R and u are independent and HΣ AA  is a 

factorization of Σ , where A is a complex Nxk matrix and 

( )rank kA . In the following derivations we suppose that 

Σ  is full-rank, then ( ) ( )rank rank N A Σ . 

1.1 Particular cases: Complex t-distribution 

A complex N-dimensional vector z is t-distributed with zero 

mean value and normalized covariance matrix Σ  if its PDF 

is given by: 
 

 
 

 

 
11

( )

N

H

N

N
p

 
  

  

 


     

    
    

z z Σ z
Σ

 (2) 

 

where   is the shape parameter and   is the scale 

parameter characterizing the distribution. The complex t-

distribution is a particular case of CES distribution 

when 2R Q  is a r.v. independent of u and it is F-

distributed such that  

  
 

 
11

( )
,

N

Np q q q
B N

 

 

  

 

    
    

   
 (3) 

 

and        1, 1 !B N N N       . It is evident that in 

this case the density generator is  
 

( )
N

g t t


 
 

  , 

where 1Ht  z Σ z . This distribution belongs as well to the 

family of compound-Gaussian, a subclass of CES 

distribution, and can be obtained with a complex Gaussian 

distributed speckle and an inverse Gamma (IG) distributed 

texture. It is quite often used to model the sea clutter data 

[9]. 
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1.2 Multivariate Generalized Gaussian Distribution  

A complex N-dimensional vector z has a multivariate 

Generalized Gaussian distribution (MGGD) with zero mean 

and normalized covariance matrix Σ  if its PDF is given by  
 

     
1 1; exp H

Np C b
   

  
z Σ Σ z Σ z  (4) 

 

where b is the scale parameter,  the shape parameter and 

NC  a normalization constant. The r.v. R, in distribution, is 

equivalent to 1 2

dR G   where G is a gamma r.v. with 

scale parameter b and shape parameter N  . In the 

scalar case (N=1) the PDF of R is:  
 

   
1 2

1 1( ) 2 exp ( )R

r
p r b r u r

b


 


   

    
 

 (5) 

and      2 1 12 1E R b     . In this case the density 

generator is ( ) exp( )g t t b  . 
 

2. ML ESTIMATORS OF THE SCATTER MATRIX 
 

To estimate the covariance matrix (or the scatter matrix) of 

the observed vector under test z (primary vector), generally 

in both radar and communications applications, it is 

supposed to dispose of K>N secondary data vectors, 

independent and identically distributed (i.i.d.), that share 

with the primary vector the same statistical characteristics, 

then the covariance matrix as well [3-6]. Using these 

secondary vectors  
1

K

i i
z  to build the maximum likelihood 

function, the ML estimate of Σ  for CES distribution is 

given by the solution of the ML equation [3]: 
 

   1

1

1 K
H H

k k k k

kK
 



 Σ z Σ z z z  (6) 

 

where      1t g t g t   is the weight function 

depending on the shape of the density generator g, and 

 g t dg dt  . Generally eq. (7) is implicit, except in the 

Gaussian case where   21t  , where 
2  is the variance 

of the Gaussian distribution, and the estimator, up to a scalar 

factor 21  , is the popular Sample Covariance Matrix 

(SCM) estimator, and it must be solved iteratively. Proofs of 

uniqueness and convergence of solution (6) for some CES 

distributions are in [8].  

2.1 ML for complex t-distribution 

From eq. (6) we can derive that the ML estimate of the 

scatter matrix in this case is given by the solution of the 

following recursive equation: 
 

  
1 1

1

ˆ
ˆ

HK
k k

n H
k k n k

N

K



 
 









z z
Σ

z Σ z
 (7) 

 

Since by definition for the scatter matrix we have 

 tr NΣ , we can introduce the constraint on the trace in 

the iteration to calculate the ML estimation, as proposed in 

[10], so yielding: 
 

  
1 1

1

ˆ
ˆ

HK
k k

n H
k k n k 

 






z z

Σ
z Σ z

 with  1
ˆ

ntr N Σ  (8) 

 

2.2 ML for MGGD 

The constrained ML estimate of the scatter matrix in this 

case is given by the unique solution of [11]: 
 

  

 
11

11

ˆ
HK

k k

n
Hk
k n k





z z

Σ

z Σ z

   with  1
ˆ

ntr N Σ  (9) 

 

3. CRLB ON COVARIANCE MATRIX ESTIMATION  
 

Supposing that Σ  depends on a vector of M real unknown 

parameters 1[ , ]T

M θ  that we want to estimate, we can 

calculate the CRLB(θ ) by inverting the Fisher Information 

Matrix (FIM) whose elements are given by 
 

   
,

ln ( ) ln ( )
i j

i j

p p
E

 

   
  

   

z z
J  (10) 

 

Moreover, we suppose here that the only unknown 

parameters in the data vector distribution relate to the scatter 

matrix, whereas the shape and scale parameters of the 

distribution are known. 

3.1 CRLB for t-distributed CES 

Using matrix and derivative properties [12] we can verify 

that in this case, 
 

 1 1 1

1

ln ( ) H

i iH

i

p N
tr



  

  



 
  

 

z
Σ A z Σ A Σ z

z Σ z
 (11) 

 

where we set i i  Σ A , for 1, ,i M . Then, after 

some algebra, we obtain 
 

 

   

   

   

 
 

1 1

,

1 1

1

1

1 1
1

1

1 1 1 1
2

2
1

i ji j

H

j

i H

H

i
j H

H H

i j

H

tr tr

N tr E

N tr E

N E


 


 


 

 

 





 




   



  

  
   

  

  
   

  

 
 

   
 

 

J Σ A Σ A

z Σ A Σ z
Σ A

z Σ z

z Σ A Σ z
Σ A

z Σ z

z Σ A Σ z z Σ A Σ z

z Σ z

 (12) 

 

In the Appendix we verified that eq. (12) yields to 
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     

 

1 1

,

1 1

1

1

1

i ji j

i j

tr tr
N

N
tr

N







 

 

 
 




 

J Σ A Σ A

Σ A Σ A  (13) 

 

As verified in [9] for     the PDF tends to the 

multivariate Gaussian PDF. In this case, as expected [12]: 
 

     1 1

, i ji j
tr  J Σ A Σ A

 
 (14) 

 

3.2 CRLB for MGGD  

In this case we have 
 

   

    
    
  

1 1

,

1
1 1 1 1

1
1 1 1 1

2
2 2

1 1 1 1 1

2

i ji j

H H

i j

H H

j i

H H H

i j

tr tr

tr E
b

tr E
b

E
b













 


   


   


    

  







J Σ A Σ A

Σ A z Σ z z Σ A Σ z

Σ A z Σ z z Σ A Σ z

z Σ z z Σ A Σ z z Σ A Σ z

 

   (15) 

In the Appendix we prove that 
 

 

 
 

   

 

1 1

,

1 1

1
1

1

i ji j

i j

N
tr tr

N

N
tr

N





 

 

 
   

  






J Σ A Σ A

Σ A Σ A

 (16) 

 

In the complex Gaussian case 1  . Hence, as expected, 

again the FIM is given by (14). 

 

4. NUMERICAL ANALYSIS 
 

To investigate numerically the behaviour of the CRLBs and 

to compare it with the accuracy of the "constrained" ML 

estimator we considered an AR(1) stationary process with 

normalized covariance function ( )
m

C m  , where   is 

the one-lag correlation coefficient. We investigated different 

cases with different levels of a-priori knowledge on the 

scatter matrix, that is real. For lack of space, we report here 

only the results for the following cases: (C1) Case 1: 

Completely unknown matrix. In this case the unknown 

parameters are all the elements of the scatter matrix, thus 

M=N
2
; (C2) Case 2: Completely unknown matrix with the 

constraint on the trace that  tr NΣ , that amounts to say 

that the last element on the main diagonal is known to be 

   
1

1, ,

N

iN N i i
N




 Σ Σ . In this case M=N

2
-1. To analyze 

the impact of the constraint on the trace, we consider first 

the easiest CES model, the complex Gaussian one and we 

compare the square root of the CRLBs (RCRLBs) in the 

case C1 (C1-G) and C2 (C2-G) of 11Σ  and 12Σ  with the 

Root Mean Square Error (RMSE) of the same matrix 

elements of the Sample Covariance Matrix (SCM), the well 

known ML estimate on Gaussian covariance matrix [12], 

and the SCM where we impose the constrain ˆ( )tr NΣ . 

The constrained SCM is named SCMNT in the figures.  

In Fig.1 both CRLB and RMSE refer to the element 

12 Σ , in Fig. 2 we refer to 11 1Σ . On the x-axis there is 

the number of samples, that is the dimension of the vector z, 

that spans in the interval [4-30]. If not otherwise stated, 

0.9   and K=2N. The gain in constraining the trace is 

evident for both estimator and bound, particularly for low 

values of N. The initial increasing in the behaviour of both 

RMSE and RCRLB must not be surprising, since, with 

increasing N the number of unknowns is increasing as well. 
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Fig.1 - CRLBs and RMSEs for 
12 Σ , complex Gaussian process. 
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Fig.2 - CRLBs and RMSEs for 

11 1Σ , complex Gaussian process. 

 

In Figs 3 and 4 we plot the RMSEs of the constrained ML 

estimator of 
11Σ̂

 
and 

12Σ̂
 
and the RCRLBs in the case of t-

distributed data. The number of iteration to solve eq. (8) has 

been set to Nit=3, and the matrix estimator has been 

initialized using the SCMNT estimate. The performance is 

quite similar to the Gaussian case. C1-T and C2-T are the 

RCRLBs for C1 and C2 with t-distributed data and the 
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RMSEs are quite close to the RCRLBs C2-T for both 

elements.  
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Fig.3 - CRLBs and RMSEs for 

12 Σ , complex t-distribution. 
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Fig.4 - CRLBs and RMSEs for 

11 1Σ , complex t-distribution. 
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Fig.5 - CRLBs and RMSEs vs , complex t- distribution. 

 

 

For gaining a deeper insight into the constrained ML matrix 

estimator for the t-distributed process, in Fig. 5 we plot the 

RCRLBs and the RMSEs as a function of the shape 

parameter  , for N=8 and K=16. In this figure the subscript 

"11" refers to the element 11Σ , and "12" to 12Σ , C1 and C2 

refer to the RCRLBs in the two analyzed cases, "T" denotes 

the t-distribution, and ML for the RMSEs of the ML 

estimator. 

The variations of RMSEs and CRLBs are generally very 

slow as a function of  , particularly for the constrained 

case, meaning that the ML estimator is almost insensitive to 

the variations of this parameter. The analyses performed on 

the MGGD process have shown pretty similar results and 

are omitted here for lack of space. 
 

5. CONCLUSIONS 

In this paper we have analyzed the MLEs and the CRLBs 

for the scatter matrix of CES distributions, focusing in 

particular on the t-distribution and the MGG-distribution. 

We provided closed form expressions of the FIM in both 

cases and we compared some numerical results for the 

RCRLBs and RMSEs in the case of Gaussian (MGG with 

=1) and t-distributed complex processes. The results show 

that: (i) There is always a gain in constraining the trace, 

particularly for low values of N; (ii) The performances of 

the "constrained " SCM in the Gaussian case are pretty close 

to those of the constrained MLE for the t-distribution. (iii) 

The MLE for the t-distribution is almost insensitive to the 

variations of the distribution shape parameter, which is a 

measure of data non-Gaussianity. 
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APPENDIX - CRLBs calculation 

Before proceeding in the calculation of CRLBs for t-

distributed CES of eq. (15), we must notice that a white, unit 

power, Gaussian distributed vector w is a particular case of 

the CES distributed vector, with Σ I  and amplitude R=Rw 

central 2 -distributed random variable of order 2N, scale 

parameter b=1/2 such that  2 2wE R Nb N   and 

   4 1wE R N N  . Based upon this property, we can write 

in general that 
wRu w , then 1

wR R R z Λu Λw , where 

z is independent of Rw. Observing that 1H  z Σ z  
2 1 2 2H H H HR R R   u Λ Λ Λ Λu u u , since 1H u u , and 

calling x Λu , we obtain  
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where we used the independence of R of x . If we introduce 

the vector  ,wR CN  t Λw Λu 0 Σ , we can use the 

relation    1 1 1H

j jE tr  t Σ A Σ t Σ A  [Kay] and, observing 

that      1 1 2 1 1H H

j w jE E R E   t Σ A Σ t x Σ A Σ x , we obtain 
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Similarly, we observe that  
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   (A.3) 
 

where we used the property of complex Gaussian vectors 

       H HE tr tr tr t Ct t Dt CΣ DΣ CΣDΣ , where C and 

D are Hermitian matrices and again  HEΣ tt . 

Replacing eqs (17-18) in eq. (15) we obtain the FIM 
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(A.4) 

 

Now we notice that  
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 (A.5) 

Similarly 
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 (A.6) 

Replacing (A.5-6) in (A.4) yields the closed form FIM of 

eq. (13). 

With similar observations as in the t-distribution case we 

obtain, in the MGGD case, that  
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and 
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Replacing eqs (A.7-8) in eq. (A.4) we obtain the FIM 
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Observing that    2E R E G Nb   , 

   4 2 2 1 2 2 2E R E G Nb N b      , and replacing these 

relations in eq. (A.4) we obtain the FIM in eq. (16). 
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