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ABSTRACT

The limitations of statistical approaches used for Fault De-

tection and Diagnosis (FDD) of processes, are related to the

local character of used statistics. For the sake of enhancing

the detectability of incipient faults and assessing efficiently

the fault level, that is the quality of operation, one should in-

vestigate the benefits a ’global’ fault detection approach may

provide. The Kullback-Leibler Divergence is proposed under

the discipline of Statistical Process Control (SPC). A theo-

retical analysis is conducted to establish an analytical model

relating the divergence to the fault severity amplitude. The

model, when applied to a numerical example, provides an up-

per bound of the fault amplitude. While the usual statistics are

not able to estimate the fault level, an upper bound is always

necessary to guarantee a safety margin for the process.

Index Terms— Fault diagnosis, Fault modelling, Incip-

ient fault detection, global statistical approach, Kullback-

Leibler Divergence, fault severity assessment.

1. INTRODUCTION

There are extensive theoretical and experimental studies in

the literature that investigate different types of Fault Detec-

tion and Diagnosis (FDD) approaches [1, 2]. Of all statistical

approaches used for the FDD, Principal Component Analy-

sis (PCA) has been successfully applied for monitoring of

complex and highly dimensional processes in multiple do-

mains [3–5]. PCA uses a large amount of historical data

collected from the process to build an implicit model for the

normal process behaviour. As a SPC technique, it does not

require a prior physical full understanding of the process nei-

ther detailed theoretical studies to be made.

The present work addresses the incipient fault detection

and estimation problem. The drawbacks of most statistical

techniques originate from a common character. They extract

a diagnostic information which actually represents only a part

of the entire fault signature. This is what will be denoted by

’local’ character. By analysing the FDD capabilities of the

usual statistical techniques, it can be shown that limitations

are strongly related to this character: (1) they show some

deficiencies in the detection of incipient faults which cause

small changes on the statistics of the process observations,

(2) they are sensitive to the normal process variations which

might obscure the fault-related information (3) the fault sever-

ity is hardly estimated using these techniques.

It can be argued that one should investigate the benefits

a ’global’ extraction of the fault signature may provide, in

terms of enhancing the detectability of incipient faults and

efficiently estimating the fault level. A ’global’ extraction ap-

proach will be based on the whole fault signature in order to

detect the fault, being a hidden information. The technique

proposed here consists in the Kullback-Leibler Divergence

(KLD) as a fault indicator and it derives from the statisti-

cal formulation of processes. This probabilistic measure was

previously used for pattern recognition, anomaly and change

detection [1, 6, 7]. Also, it has been shown in [8] that it is

sensible to the fault level and allows an assessment of the

fault severity thanks to its global character. Therefore, this

paper is devoted to develop an analytical model of the diver-

gence which will depend explicitly on the fault amplitude.

The study addresses incipient faults, meaning variations rang-

ing from 0 to 1% of signals amplitude.

The paper is organised as follows. Section 2 details

the problem statement and focuses on the limitations of the

usual statistical FDD approaches. Section 3 introduces the

Kullback-Leibler Divergence as a ’global’ fault detection cri-

terion. A theoretical analysis of the divergence expression

depending on the fault amplitude parameter is made. Sec-

tion 4 is concerned with the validation of the obtainedKLD
analytical model. Finally, section 5 reviews the main points

discussed in this work and concludes the study.

2. PROBLEM STATEMENT

The FDD is usually made by referring to the statistical mo-

ments as descriptive of probability distributions [1]. The

mean, the variance, as well as the higher-order moments as

skewness and kurtosis are often used separately to detect

faults. This is the case of Statistical Process Control (SPC)

tests used along with control charts. The on-line monitor-

EUSIPCO 2013 1569739769

1



 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

ing based on these techniques consists in evaluating, at each

sampling-time, statistical tests that assess the deviation of

the process from its desired values in terms of mean and

variance. Multivariate control charts like the MEWMA (Mul-

tivariate Exponentially Weighted Moving Average) and the

MCUSUM (Multivariate Cumulative Sum) control charts are

able to detect deviations related to the process mean vec-

tor [9]. The MEWMA-CM control chart is used to detect

changes on the process covariance matrix [10]. An insight of

monitoring simultaneously the mean and the variance in an

univariate framework was given in [11]. But it is not extended

to cover the multivariate framework due to the complexity of

multivariate probability distributions.

Real incipient faults affect the probability distributions in

an unpredictable manner causing very slight changes along

the shape of distributions. In this case, several statistical prop-

erties (e.g., mean, covariance, etc.) may change simultane-

ously. However, the aforementioned statistical tests are able

to capture only a part of the change induced by faults. They

do not reflect the actual fault level and also they may fail to

detect the fault presence unless the change is quite significant.

The statistics used with projection methods such as PCA

reflect instantaneous changes, and thus they are not able to

give a value that indicates straightaway the fault presence, as

well as its severity. The typical fault indicators used with PCA

are the HotellingT2 and the SPE [5].

• The T
2 represents variations of amplitude projection

of observations into the principal subspace. A rela-

tively small change, due to the fault occurrence, will

be masked by the large amount of variabilities naturally

present into the principal subspace. It was argued that

the principal subspace can detect only faults that affect

independent variables [5]. In fact, this result underes-

timates the fault detection capabilities of the principal

subspace, since the latter is meant to carry the most rel-

evant information of process data.

• Correlated variables have rather to be detected with the

SPE index. However, the SPE usually shows impor-

tant fluctuations around the threshold whenever a fault

happens. It represents variations of projections into the

residual subspace, and it is sensitive to the signal level

at each observation. It is not able to reflect the fault

amplitude in a straightforward manner. The fault es-

timation based on the reconstruction principle, given

in [12], is not accurate because it assumes that the SPE

for faultless observations is null. However, the SPE

has always a nonzero value due to the noise naturally

present in the residual subspace.

Besides theT2, the SPE and their variants as distance dis-

criminants, an angular-based approach is proposed in [13] in

order to exploit and enhance the fault detection capability of

the principal subspace. It is termed ”Moving Principal Com-

ponent Analysis”, for which residuals are generated by com-

paring the direction of current principal components to the

reference ones. Despite the successful applications of this ap-

proachwhere the local distances fail, it was shown therein that

a fault is undetectable by the angular index unless it makes a

meaningful change in the data correlation structure. So the

detection of small faults was unsatisfactory.

From a ’global’ approach’s viewpoint, the fault-related

information should be extracted from the whole information

supplied by the data. A global fault indicator, naturally, does

not reflect instantaneous variations, but it is able to capture

global disparities and distortions. Instead of monitoring lo-

cal parameters of probability distributions to detect changes,

it becomes more appreciated to monitor the overall shape of

distributions. Comparing probability distributions to their ref-

erences, using informational measures, will be able to reveal

small disparities caused by incipient faults; the hidden in-

formation will be totally extracted. The KLD is proposed

for this objective. It allows an evaluation of the dissimilar-

ity/divergence between two distributions.

3. INCIPIENT FAULT SEVERITY ESTIMATION

3.1. Definition

For discrimination between two continuous probability distri-

bution functions (pdfs) f(x) and g(x) of a random variable x,
the Kullback-Leibler Information is defined as [14]:

I(f‖g) =

∫

f(x) log
f(x)

g(x)
dx. (1)

The divergence is then defined as the symmetric version of

the Information:

KLD(f, g) = I(f‖g) + I(g‖f). (2)

For normal densities f and g such that f ∼ N (µ1, σ
2
1) and

g ∼ N (µ2, σ
2
2), where µ1, µ2 are the means and σ2

1 , σ
2
2 are

the variances for f and g respectively, the Kullback-Leibler

Divergence between f and g is given by

KLD(f, g) =
1

2
[
σ2
2

σ2
1

+
σ2
1

σ2
2

+(µ1−µ2)
2(

1

σ2
1

+
1

σ2
2

)−2]. (3)

The faults of high severity cause important changes that

can affect the support of the pdfs. Only the Information can

be used in this case, because the divergence requires that the

pdfs share the same support. However, distortions caused by

incipient faults are slight and rather invisible with an unaided

eye. The divergence is preferred in this case since it gives

more significant value for discrimination against the fault-free

condition, and the distributions share the same support.

3.2. Analytical model derivation

A simple and light computational expression of the diver-

gence is obtained assuming that the measurements vector

2
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is m−variate normally distributed. So principal component

scores, which are linear combinations of the original vari-

ables, are also normally distributed. However, by contrast to

the last (m − l) residual scores (the data projection onto the
residual subspace), the latent ones have large variances so that

their distributions are far from being degenerated. Therefore,

the divergence is strongly related to the principal subspace.

Introduce the following notations:

Let’sX[N×m] such asX = (x1, ...,xj, ...,xm) = (xij)i,j is

the original data matrix where xj = [x1j ...xNj ]
′

is a column

vector ofN measurements taken for the jth variable.
X̄[N×m], where X̄ = (x̄1, ..., x̄j , ..., x̄m) is the centered ma-
trix; each column ofX is subtracted from its mean value.

S is the sample data covariance matrix.

P[m×m], such as P = (p1, ..., pl, ...pm) is the loading eigen-
vectors matrix.

T[N×m], where T = (t1, ..., tl, ..., tm) is the scores matrix
given by T = X̄P
l is the dimension of the principal subspace and the number
of latent scores as well.

λ1, ..., λl in the descendant order, are the variances of the

latent scores and the eigenvalues associated respectively to

p1, ..., pl.
a is the fault amplitude parameter.
The star mark (*) refers to the fault-free case.

From the assumption of normality, it follows that each of

the l principal scores tk, (k = {1, 2, ..., l}), has a pdf which
we denote f such that f ∼ N (0, λk).We propose to compare

f against its reference. The reference is denoted f∗, f∗ ∼
N (0, λ∗

k). It is totally described by the eigenvalue λ
∗

k which

refers to the PCA’s model . The mean of the distribution is

supposed unchanged (zero) after the fault occurrence, because

we assume that a fault, particularly an incipient one, will not

move the centre of the PCA’s model. This assumption has

been made with the detection of subspace changes approach

[13]. Then, we can write

λk = λ∗

k +∆λk (4)

where ∆λk is the eigenvalue bias caused by the fault occur-

rence. By specializing (3) to the case considered, the diver-

gence becomes

KLD(f, f∗) =
1

2
[

∆λ2
k

λ∗

k(λ
∗

k +∆λk)
]. (5)

If we characterize the fault by its amplitude a, λ∗

k refers to the

case a = 0. Suppose λk is a function of a and is infinitely

differentiable in the neighborhood of a = 0, it stems from
Taylor development of λk that:

λk = λ∗

k +
∂λk

∂a
a+

1

2

∂2λk

∂a2
a2 +

1

3!

∂3λk

∂a3
a3 + ... (6)

Suppose PCA is computed with the covariance matrix S, it
can be shown from [15] that writing S in function of the fault

parameter a gives the nth-order eigenvalue derivative as:

∂nλk

∂an
= p∗

′

k

∂nS

∂an
p∗k (7)

where p∗k is the kth loading eigenvector associated to λ
∗

k. Sim-

ilarly to λ∗

k, p
∗

k refers to the PCA’s model for which a = 0.
Then, based on (7), the KLD given by (5) will be ex-

pressed in terms of a.
So, the fault on the jth variable xj is characterized with a

multiplying factor of amplitude a affectingxj within the sam-

pling interval [b, c]. The simple fault case is considered, that
is when xj is faulty, xr with r 6= j is fault-free. We can

write:

xj =



























x1j

...

xbj

...

xcj

...

xNj



























=



























x∗

1j
...

x∗

bj

...

x∗

cj

...

x∗

Nj



























+a×



























0
...

x∗

bj

...

x∗

cj

...

0



























= x
∗

j+Fj (8)

where Fj = a × [ 0 . . . x∗

bj . . . x∗

cj . . . 0 ]′. The
sample mean of xj is given by

µj = µ∗

j + a×
1

N

c
∑

i=b

x∗

ij . (9)

The jth column of the centered matrix X̄[N×m] is given by

x̄j = xj − µj1

= (x∗

j − µ∗

j1) + (Fj − a× 1
N

∑c

i=b x
∗

ij1)

= x̄
∗

j + F̄j

(10)

where F̄j = Fj−a× 1
N

∑c

i=b x
∗

ij1, 1 is a column vector ofN
ones. It follows from the assumption of normality of the data

that the ith row of X̄ may be assumed as a random sample of

m variables drawn from a normal N (0,Γ) distribution. An
unbiased estimate of the true covariance matrix Γ is given by

S =
1

N
X̄ ′X̄. (11)

S can hence be written as:

S =
1

N

















x̄
′

1
x̄1 . . . x̄

′

1
x̄j . . . x̄

′

1
x̄m

...
...

...

x̄
′

jx̄1 . . . x̄
′

jx̄j . . . x̄
′

jx̄m

...
...

...

x̄
′

mx̄1 . . . x̄
′

mx̄j . . . x̄
′

mx̄m

















(12)

Substituting x̄j by its expression given in (10), and then dif-

ferentiating each element of S with respect to the fault param-

eter a gives after all calculations:

∂x̄′

rx̄q

∂a
= 0, ∀r, q 6= j (13)
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KLD(f, f∗) =
2

N2

(

pjk
∑m

r=1 prkδr × a+ (3/2p2jk)σ × a2
)2

λ∗

k

(

λ∗

k + 2
N
(pjk

∑m

r=1 prkδr)× a+ 3
N
(p2jk)σ × a2

) (22)

∂x̄′

r(x̄
∗

j + F̄j)

∂a
=

∂(x̄∗

j + F̄j)
′
x̄r

∂a
= δr ∀r 6= j (14)

∂(x̄∗

j + F̄j)
′(x̄∗

j + F̄j)

∂a
= 2δj + 2aσ. (15)

where δr, δj and σ are constants independent of the fault pa-

rameter and given by

δr =

c
∑

i=b

(xir − µr)x
∗

ij −
1

N

c
∑

i=b

x∗

ij ×
N
∑

i=1

(xir − µr) (16)

δj =

c
∑

i=b

(x∗

ij − µ∗

j )x
∗

ij −
1

N

c
∑

i=b

x∗

ij ×
N
∑

i=1

(x∗

ij − µ∗

j ) (17)

σ = [N−(c−b+1)]

(

1

N

c
∑

i=b

x∗

ij

)2

+

c
∑

q=b

(

x∗

qj −
1

N

c
∑

i=b

x∗

ij

)2

(18)

δr, δj and σ are given in function of the original variables,

which are not faulty, and the fault-free measurements of the

variable xj as well. The computation of these constants re-

quires however the knowledge of the faulty interval. There-

fore we may write for the first-order derivative of the covari-

ance matrix:

∂S

∂a
=

1

N

















0 . . . δ1 . . . 0
...

...
...

δ1 . . . 2δj + 2aσ . . . δm
...

...
...

0 . . . δm . . . 0

















(19)

The second-order sensitivity of S with respect to the fault am-

plitude a is obtained by differentiating (19). We obtain:

∂2S

∂a2
=

1

N



















0 . . . 0
...

... . . . 2σ . . .
...

...

0 . . . 0



















(20)

The higher-order sensitivities of S (n > 2) are all null and so
is the case for the eigenvalue derivatives.

Writing the loading vector p∗k as p
∗

k =
[

p1k · · · pmk

]

′

it follows that














∂λk

∂a
= p∗

′

k

∂S

∂a
p∗k =

2

N

(

pjk

m
∑

r=1

prkδr + p2jkσ × a

)

∂2λk

∂a2
= p∗

′

k

∂2S

∂a2
p∗k =

2

N
p2jkσ

and thus

λk = λ∗

k+
2

N

(

pjk

m
∑

r=1

prkδr

)

×a+
3

N

(

p2jk
)

σ×a2. (21)

Finally, the theoretical expression of the divergence be-

tween the pdf of the kth principal score and its reference, de-
pending on the fault amplitude parameter a is hence given,

from (5), as (22).

4. MODEL VALIDATION

To validate the theoretical model of the divergence, we con-

sider a system of m=7 variables inspired from [16] and de-

fined as follows:

x1(i) ∝ N (0, 1), x2(i) = −x1(i)

x3(i) = x1(i)− x2(i), x4(i) = x1(i)− 3x2(i)

x5(i) = 0.5x2(i) + x3(i), x6(i) = x1(i)− 4x2(i)

x7(i) = 0.2x2(i) + x3(i)

This example is used for satisfying the theoretical assump-

tion of the multivariate normality. We form a matrix X of N
rows/samples, X = (x1,x2, ...,x7). Obviously, diagonal-

izing the covariance matrix of X leads to l = 1 eigenvalue,
since rank(X) = 1. We get λ∗

1 = 52.457. Its associated

eigenvector p∗1 spans the principal subspace reduced here to

an affine line: p∗1 = [0.138 − 0.138 0.2761 0.5521 0.2070
0.6901 0.2484]′. Then, we obtain t

∗

1
= X̄p∗1, which sum-

marizes the information contained into X . So the probability

density of t∗
1
is estimated as the reference distribution.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

10
−13

10
−12

10
−11

10
−10

10
−9

a

K
L
D

Estimated with  N=10
8

The theoretical model

Estimated with  N=10
6

Estimated with  N=10
7

a
1

 a
2

kld

Fig. 1. Evolution of the KLD
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Thus, the KLD evolution with respect to the fault am-

plitude a, will be shown through (22), as well as through the
straightforward formula (2) while substituting the integral op-

erator with a discrete summation. We set the fault interval

[b, c] such that the number of faulty samples consists of 1%
of N . δr (r = 1, ..., 7) and σ can hence be calculated. Then,

we affect x4, chosen arbitrarily, with a fault of amplitude a
(ranging from 0 to 1% as we consider incipient faults) for all

samples included into [b, c].

Fig.1 displays in logarithmic scale the KLD versus the

fault parameter a. The continuous line refers to the theoreti-
cal model (22), and the 3 dashed ones are obtained from (2)

which requires estimating the latent score’s pdf for each value

of a. If the sample size is large enough, the assumption of

normality holds true and the analytical model gives an exact

estimation of the fault amplitude. If not, however, as shown

in Fig.1, the theoretical model gives an over estimation (a2)
of the actual fault amplitude (a1) from theKLD value (kld),
therefore always guaranteeing a safety margin for the faulty

process.

5. CONCLUSION

While usual statistics applied for SPC were used for trending

analysis, the Kullback-Leibler Divergence is able to provide a

value that indicates efficiently and straightaway the fault pres-

ence as well as its severity. It has been proposed as a global

statistic for detection of incipient faults (<1%). An analytical

model that computes the Kullback-Leibler Divergence from

the fault amplitude has been developed. The proposed theo-

retical approach of fault detection and diagnosis is effective

and allows obtaining a safety margin according to the signal

and the fault characteristics. The model has been validated

with a simulated system satisfying the multivariate normal-

ity assumption. However, this assumption is not mandatory

since the model still allows to give an upper bound of the fault

level. In future works, this upper bound will also be theoret-

ically verified. The FDI error probabilities will be calculated

as functions ofKLD.
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