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ABSTRACT

We tackle the problem of localizing multiple sources in mul-

tipath environments using a recently proposed sparsity-aware

correlation-based localization paradigm. It is shown in our

previous studies that involving cross-correlations leads to a

considerable improvement in terms of number of identifiable

sources; however, the sources need to have known and similar

statistics in order to construct a fingerprinting map and local-

ize them. To surmount this constraint, we approach the prob-

lem of sparsity-aware localization from a frequency-domain

perspective and propose a method which is blind to the statis-

tics of the source signals. Moreover, we also show how this

approach can further improve the performance in terms of

number of identifiable sources. Our simulation results cor-

roborate the efficiency of the proposed algorithm in terms of

localization accuracy as well as detection capability.

Index Terms— Multi-source localization, multipath en-

vironments, RSS fingerprinting, sparse reconstruction.

1. INTRODUCTION

Precise localization of multiple sources is a fundamental

problem which has received an upsurge of attention recently.

A traditional wisdom in received signal strength (RSS)-based

localization tries to extract distance information from the

RSS measurements. However, this approach fails to provide

accurate location estimates due to the complexity and unpre-

dictability of the wireless channel. This has motivated another

category of RSS-based positioning, the so-called location fin-

gerprinting, which discretizes the physical space into grid

points (GPs) and creates a map representing the space by

assigning to every GP a location-dependent RSS parameter,

one for every access point (AP). The location of the source is

then estimated by comparing run-time phase measurements

with a fingerprinting map (constructed in the training phase)

at the source or APs, for instance using K-nearest neighbors

(KNN) [1] or Bayesian classification (BC) [2].

A deeper look into the grid-based fingerprinting localiza-

tion problem reveals that the source location is unique in the

This work was supported by NWO-STW under the VICI program

(10382).

spatial domain, and can thus be represented by a 1-sparse vec-

tor. This motivated the use of compressive sampling (CS) to

recover the location of the source using a few measurements

by solving an ℓ1-norm minimization problem. This idea illus-

trated promising results for the first time in [3, 4] as well as in

the following works [5, 6]. In [5], a two-step CS-based indoor

localization algorithm for multiple targets is proposed where

next to a coarse localization step (cluster matching) a fine lo-

calization step is considered in which CS is used to recover

sparse signals. In [6], a greedy matching pursuit algorithm

is proposed for RSS-based target counting and localization

with high accuracy. In [7], we have proposed to reformu-

late the sparsity-aware localization problem so that we could

make use of the cross-correlations of the signal readings at

the different APs which had not been exploited before. An

interesting by-product of the proposed approach in [7] is that

under some conditions we could convert the given underde-

termined problem to an overdetermined one and efficiently

solve it using classical least squares (LS). A similar idea to

incorporate cross-correlations of received signals at different

elements of a linear array can also be found in the direction-

of-arrival (DOA) estimation context [8].

However, involving cross-correlations to gain more infor-

mation constrains the source(s) in the run-time phase to have

known (and similar in case of multiple sources) statistics in

order to measure/compute a fingerprinting map in the train-

ing phase. This is not fulfilled in many practical passive lo-

calization scenarios and thus limits the range of applications

of such algorithms. To overcome this important constraint

permitting a wider variety of applications, we propose to ap-

proach the problem from a frequency-domain perspective by

the help of a proper filter bank design leading to a method that

is blind to the statistics of the source signals. Moreover, we

also show that incorporating this information in the frequency

domain improves the performance in terms of number of iden-

tifiable sources. The rest of the paper is organized as follows.

In Section 2, the sparsity-aware network model is explained.

Section 3 starts with a brief review of our recently proposed

algorithm in [7] and next the idea of blind fingerprinting us-

ing frequency-domain information is presented. Simulation

results in Section 4 corroborate our analytical claims. Finally,

the paper is wrapped up in Section 5.

EUSIPCO 2013 1569738735
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2. SPARSITY-AWARE NETWORK MODEL

Consider that we have M APs distributed over an area which

is discretized into N cells each represented by its central GP.

We consider K source nodes (SNs) which are randomly lo-

cated on these GPs. We assume that the APs are connected to

each other in a wireless or wired fashion so that they can co-

operate by exchanging their signal readings. Now, if the k-th

SN broadcasts a time domain signal sk(t), the total received

signal at the m-th AP can be expressed by

xm(t) =
K
∑

k=1

xm,k(t) =
K
∑

k=1

L
∑

l=1

hl,m,ksk(t− τl,m,k) + nm(t).

where we consider an L-path channel for every SN with

hl,m,k and τl,m,k respectively denoting the channel coef-

ficient and time-delay of the l-th path from the k-th SN

to the m-th AP; nm(t) is the additive noise at the m-

th AP. Our main assumptions on the signals and noises

can be explained as follows. The signals sk(t) are as-

sumed to be ergodic, mutually uncorrelated sequences, i.e.,

E{sk(t) s∗k′(t′)} = ηkrk(t − t′)δk−k′ , with ηk being the

k-th signal power, rk(τ) the normalized signal correlation

function with rk(0) = 1, and δk the unit impulse func-

tion. Meanwhile, E{.} denotes the statistical expectation

which is equal to temporal averaging due to the ergodic

property of the signals. The noises nm(t) are assumed

to be ergodic, mutually uncorrelated white sequences, i.e.,

E{nm(t) n∗
m′(t′)} = σ2

nδ(t − t′)δm−m′ , with σ2
n = N0B

the variance of the additive noise with density N0 within the

operating frequency bandwidth B, and δ(t) the Dirac impulse

function. The transmitted signals are uncorrelated with the

additive noise, i.e., E{sk(t) nm(t′)} = 0, ∀t, t′ and ∀m, k.

Passive Localization: We consider rk(τ) 6= rk′(τ) and

assume they are unknown. Such a set-up fits into many pas-

sive localization scenarios, where we do not have any control

over the source signals. Therefore, we need to develop an

approach which is blind to the rk(τ)’s and uses the total re-

ceived signals at the APs to localize the SNs simultaneously.

3. PROPOSED FREQUENCY-DOMAIN APPROACH

In [7] as well as in a subsequent extended work [9], in con-

trast to the existing studies in literature, we have proposed to

consider ỹ = E{x(t)⊗ x∗(t)}, with ⊗ representing the Kro-

necker product and (.)∗ the complex conjugate, as the mea-

surement vector. Accordingly, we have measured/computed

an appropriate fingerprinting map Ψ̃ of size M2 × N to pa-

rameterize the K-sparse ỹ as

ỹ = Ψ̃θ + p̃n, (1)

where p̃n = vec(σ2
nIM ) and θ is an N × 1 vector containing

all zeros except for K non-zero elements with indices related

to the locations of the K sources and values equal to the ηk’s.

B (Approximate Bandwidth)

signal
F

(1)
channel

F
(2)

F
(Q-1)

F
(Q)

Fig. 1. Frequency-domain filtering; F (q)(f) denotes the

Fourier transform of f (q)(t).

The interesting advantage of this idea is that owing to the

newly defined Ψ̃, situations could occur for which M2 > N
and (1) could be solved using classical LS. The problem with

this new approach (called sparsity-aware RSS localization via

cooperative APs (SRLC)) as well as any other existing algo-

rithm incorporating the cross-correlations such as [8] is that

in order to form a linear system like (1) one has to make sure

that all the SNs in the run-time phase have the same statistics

as the training SN used to construct the fingerprinting map.

This basically imposes some a priori knowledge on the prob-

lem which might be lacking in some practical situations, and

thus we are also interested in an approach which is blind to the

rk(τ)’s. We tackle this issue while we also try to take advan-

tage of the large bandwidth of the received signal to gain some

extra information and enhance the SRLC, by approaching the

problem from the frequency domain (called SRLC-FD).

Let us start by explaining an appropriate filter bank de-

sign which plays an important role in the following analy-

sis. Assume that we do not have any knowledge about the

rk(τ)’s. Instead, at each AP we can efficiently estimate the

bandwidth of the total received signal using appropriate spec-

trum estimation techniques; we call it B and it is assumed

to be the same at the different APs. Besides, for a fixed net-

work with known locations of the APs and GPs, the maxi-

mum delay difference between the received signals at the dif-

ferent APs ∆τmax can be computed during the training phase

or from the knowledge of the network configuration. As a

result, the maximum delay difference experienced by any sig-

nal from a multipath channel is ∆τmax + γ, where γ denotes

the maximum delay spread of the multipath channel. Hav-

ing estimated B and ∆τmax + γ, we use a set of (unit-energy)

filters {f (q)(t)}Qq=1 to divide B into Q = ⌈B(∆τmax + γ)⌉

adjacent subbands B(q) = [(q − 1)B/Q, qB/Q) with band-

width B/Q. A schematic view of an arbitrary signal, chan-

nel and the filter bank is shown in Fig. 1. Notably, since

B/Q = B/ ⌈B(∆τmax + γ)⌉ < 1/γ with 1/γ representing

the approximate coherence bandwidth of the channel, the out-

put of the q-th filter at the m-th AP experiences a flat fading

channel H
(q)
m,k for every SN. Therefore, the related output sig-
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nal can be written as

x(q)
m (t) =

K
∑

k=1

[

sk(t) ∗ f
(q)(t)

]

H
(q)
m,k + nm(t) ∗ f (q)(t)

=
K
∑

k=1

s
(q)
k (t)H

(q)
m,k + n(q)

m (t), (2)

where ∗ denotes the convolution operator, and s
(q)
k (t) and

n
(q)
m (t) respectively denote the filtered versions of sk(t) and

nm(t). Further, by simply stacking the results for different

APs, the total received signal vector can be expressed as

x(q)(t) = [x
(q)
1 (t), · · · , x

(q)
M (t)]T . Therefore, we have Q

signals x(q)(t) to compute ỹ(q) = E{x(q)(t)⊗x(q)∗(t)} with

its elements given by

y
(q)
m,m′ = E

{

x(q)
m (t) x

(q)∗
m′

}

= E

{

K
∑

k=1

s
(q)
k (t)H

(q)
m,k

K
∑

k′=1

s
(q)∗
k′ (t)H

(q)∗
m′,k′

}

+

E

{

n(q)
m (t)n

(q)
m′ (t)

}

=
K
∑

k=1

H
(q)
m,k H

(q)∗
m′,k η

(q)
k + σ2

n δm−m′ , (3)

where η
(q)
k = E{s

(q)
k (t) s

(q)∗
k (t)} and where the second and

last equalities follow from our assumptions on the signal and

noise, as detailed in Section 2.

Now, let us ignore the effect of the noise in (3) for the

time being, and discover the fingerprints. Interestingly, owing

to our proposed filtering, the location-dependent fingerprints

H
(q)
m,kH

(q)∗
m′,k do not depend on the rk(τ)’s and the effect of

the different rk(τ)’s appears in the η
(q)
k ’s, which can be han-

dled within the sparse vector of interest. Now, if we consider

that the sources can only be located on N GPs, we can use

any training source and measure the rk(τ)-independent fin-

gerprints for the q-th subband as

ψ̃
(q)

m,m′ =
[

H
(q)g
m,1 H

(q)g∗
m′,1 , · · · , H

(q)g
m,NH

(q)g∗
m′,N

]T

, (4)

where (.)g denotes values being measured/computed for the

GPs. As a result, (3) can be rewritten as

y
(q)
m,m′ = (ψ̃

(q)

m,m′)T θ(q) + σ2
nδm−m′ , (5)

where θ(q) is a K-sparse vector with only K non-zero ele-

ments equal to η
(q)
k ’s. Next, similar to SRLC, we can stack

the M2 different y
(q)
m,m′’s and ψ̃

(q)

m,m′’s to form

ỹ(q) = Ψ̃(q) θ(q) + p̃n,

where

ỹ(q) = [y
(q)
1,1, · · · , y

(q)
1,M , · · · , y

(q)
M,1, · · · , y

(q)
M,M ]T ,

and

(Ψ̃(q))T = [ψ̃
(q)

1,1, · · · , ψ̃
(q)

1,M , · · · , ψ̃
(q)

M,1, · · · , ψ̃
(q)

M,M ]

=













|H
(q)g
1,1 |2 H

(q)g
1,1 H

(q)g∗
2,1 · · · |H

(q)g
M,1 |

2

|H
(q)g
1,2 |2 H

(q)g
1,2 H

(q)g∗
2,2 · · · |H

(q)g
M,2 |

2

...
...

. . .
...

|H
(q)g
1,N |2 H

(q)g
1,N H

(q)g∗
2,N · · · |H

(q)g
M,N |2













.

Now, based on this analysis, depending on the statistical prop-

erties of the received signals, i.e., the spectrum of the sk(t)’s,

the following three cases can be studied.

3.1. Flat spectrum

Looking at Fig. 1, we understand that if the spectrum of

the sum of the sk(t)’s is (almost) flat, the η
(q)
k ’s will be

(almost) the same in the different frequency bands B(q).

This basically makes it possible to construct an augmented

version of the measurements as well as the fingerprinting

maps, as η
(q)
k ≈ ηk and hence θ(q) = θ, ∀q. This means

θ will be a K-sparse signal with all elements equal to zero

except for K elements equal to ηk. Thus, we construct

the augmented version of the run-time measurements as

ỹFD = [(ỹ(1))T , · · · , (ỹ(Q))T ]T and the augmented finger-

printing map as Ψ̃FD = [(Ψ̃(1))T , · · · , (Ψ̃(Q))T ]T . Finally,

we solve

ỹFD = Ψ̃FD θ + 1Q ⊗ p̃n, (6)

As we explained, this time Ψ̃FD is a QM2 × N matrix and

thus (6) can be solved using LASSO θ̂ = argminθ ‖ỹFD −
Ψ̃FDθ‖

2
2 + λ‖θ‖1 with λ as a sparsity regularization param-

eter, if it is under-determined, or classical LS θ̂ = Ψ̃
†
FD ỹFD

if it is overdetermined. It is worth pointing out that even for

the case where the signals have a partially flat spectrum, we

can design a number of filters for that flat part of the spectrum

and again construct (6) where in such a case we will have less

subbands.

3.2. Varying spectrum; the simple solution (Q = 1)

In contrast to the case where the signals have a flat spectrum,

for the non-flat case, we cannot construct augmented versions

of the measurements and fingerprinting maps for a unique θ

and solve a linear system similar to (6). Particularly, because

of the different η
(q)
k ’s in the different bands, the Ψ̃(q)’s and

ỹ(q)’s are related to different θ(q)’s. In this case, as a straight-

forward solution, we can simply take one of the bands, for

instance the first band B(1), and solve

ỹ(1) = Ψ̃(1) θ(1) + p̃n, (7)

using LASSO or LS. This way, we at least have the same

identifiability gain as SRLC, but more importantly, we are

blind to the rk(τ)’s. However, we still have some important

information present in the adjacent subbands which has not

been exploited. This motivates the following subsection.
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3.3. Varying spectrum; enhancing the identifiability gain

The question is how we can exploit the information present in

all the subbands to attain an identifiability gain. An important

observation which helps us to develop a solution is the fact

that even though different subbands lead to different η
(q)
k ’s for

a non-flat spectrum, all the bands lead to linear models, simi-

lar to (7), where in all of them the sparse θ(q)’s share a com-

mon support. This motivates a group-LASSO (G-LASSO)

type of solution to incorporate all the bands. However, differ-

ent from classical G-LASSO, we have different maps Ψ̃(q) for

different subbands. Similar cases occur in the framework of

the multiple measurement vectors (MVV) problem [10]. To

deal with this, we propose a modified version of G-LASSO as

defined by

Θ̂ = argmin
Θ

Q
∑

q=1

‖ỹ(q) − Ψ̃(q)[Θ]:,q‖
2
2 + λ

N
∑

n=1

‖[Θ]n,:‖2,

(8)

where Θ = [θ(1), · · · ,θ(Q)]. The first term on the right hand

side of (8) is the LS part which minimizes the error for the dif-

ferent subbands and the second term enforces group sparsity.

Based on the discussions presented in [10] for MMV, incorpo-

rating all the subbands within (8) will result in a gain in terms

of identifiability compared to (7), as is also corroborated by

our simulation results in the next section.

Identifiability and reconstruction quality: Detailed ex-

planations on some necessary identifiability requirements as

well as on the reconstruction quality (in terms of restricted

isometry property (RIP)) of the SRLC and the SRLC-FD can

be found in the extended version of this work [9].

4. SIMULATION RESULTS

In this section, we investigate the performance of the pro-

posed algorithms in terms of probability of detection (Pd)

and probability of false alarm (Pfa) against 1/σ2
n as well as

the number of existing SNs K. To this aim, we consider a

wireless network of size 10 × 10 m2 divided into N = 100
GPs. We also consider up to K = 10 sources to be simultane-

ously localized. We consider a wideband BPSK signal with

a rectangular pulse shape, 3dB bandwidth B = 10MHz and

power η = 1. This means r(τ) = 1 − |τ |
B

for the baseband

equivalent signal. We compute the autocorrelation and cross-

correlation functions during a time-slot of length T = 1ms.

The multipath channel is assumed to be a complex Gaussian

channel with L = 4 i.i.d. paths and an approximate coherence

bandwidth of 1/γ = 1MHz. Instead of taking ideal expecta-

tions E{.} in the run-time phase, we work with discrete-time

signals of limited length and hence the computations of the

autocorrelations as well as the cross-correlations will not be

ideal as in the derivations of Section 2. All simulations are av-

eraged over 100 independent Monte Carlo (MC) runs where

in each run the sources are deployed on different random lo-

cations. For all the reconstruction problems, we choose λ

by cross-validation. For the sake of simplicity of our simula-

tions, we concentrate on the localization performance, i.e., we

are only interested to know which elements of the estimated

θ correspond to a source and which elements are zeros and

this is equivalent to determining the support vector supp(θ̂).
Based on this, we define Perr, Pd and Pfa as follows:

– Perr := the probability that a source is detected when

the source is in fact not present or it is not detected

when it is in fact present.

– Pd := the probability that a source is detected when the

source is in fact present.

– Pfa := the probability that a source is detected when

the source is in fact not present.

Basically, Pd and Pfa specify all the probabilities of interest.

However, we need a detection threshold to be able to compute

them. To find the best threshold, we carry out a linear search

within the range [0, max(θ̂)) and select the value which min-

imizes Perr. Finally, note that here we only compare with

the SRLC as its superiority to the other existing algorithms is

already shown in [7, 9].

We consider the case where we have only M = 5 APs

randomly distributed within the covered area. For such a case,

M2 = 25 < N and thus it is expected that even the SRLC

might not be capable of localizing all the K = 10 sources.

In order to investigate the performance of the SRLC-FD, we

assume that all the sources have different ηk’s with a uni-

form distribution U(0.8, 1.2) and we assume that rk(τ) =
r(τ) is unknown to SRLC-FD. We would like to emphasize

that SRLC-FD can be employed even for cases where all the

sources have different rk(τ)’s. However, since this cannot be

handled by the SRLC, we omit those results here. We start

by considering the case where K = 10 sources are randomly

located on the GPs. Fig. 2 depicts a schematic view of lo-

calization for 1/σ2
n = 20dB. Clearly, SRLC-FD (Q = 1)

denotes the idea of exploiting only one frequency band as ex-

plained in Subsection 3.2. As can be seen, while the SRLC

and the SRLC-FD (Q = 1) are only capable of localizing

K = 2 sources, the blind algorithm (SRLC-FD) could local-

ize all the sources simultaneously.

We would also like to further assess the proposed algo-

rithms in terms of Pd and Pfa. Fig. 3 compares the per-

formance of the aforementioned algorithms against 1/σ2
n for

K = 4. As is clear from the figure, SRLC-FD (Q = 1) is per-

forming the worst, but it is blind to r(τ). SRLC is performing

acceptably, and attains the maximum Pd and almost a mini-

mum Pfa for 1/σ2
n values larger than 6dB. The same holds

for the SRLC-FD which is even performing better than SRLC

while it is blind. For the SRLC-FD, we have designed Q = 10
filters and the proposed G-LASSO solution (explained in Sub-

section 3.3) is employed.

Let us get a more complete picture of the performance

of the algorithms by taking a look at Fig. 4 where the detec-

tion and false alarm probabilities are depicted against K for

4
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Fig. 2. Localization with M = 5, K = 10 and 1/σ2
n = 20dB
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Fig. 3. Performance vs. 1/σ2
n for M = 5 and K = 4

1/σ2
n = 20dB. As can be seen, the performance drops for

the SRLC and the SRLC-FD (Q = 1) with K and thus Pd

starts decreasing whereas Pfa rises for K > 4. Interestingly,

for a large enough 1/σ2
n (small enough noise), SRLC-FD at-

tains an optimal performance even for K up to 10. This result

illustrates the fact that our blind algorithm with no informa-

tion about r(τ), by exploiting the information of the Q = 10
frequency subbands could outperform SRLC in terms of the

number of identifiable sources. Note that there is a major im-

provement in SRLC-FD compared to SRLC-FD (Q = 1).

5. CONCLUSIONS

This paper studies the problem of localizing multiple sources

using a correlation-based localization paradigm. We have

proposed a novel sparsity-aware fingerprinting localization

which is blind to the statistics of the source signals by ap-

proaching the problem from a frequency-domain perspective.

Our simulation results illustrate a good performance in terms

of detection capability as well as localization accuracy.
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