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ABSTRACT

High resolution radar and sonar images can be constructed

using either spotlight or stripmap synthetic aperture systems.

In the presence of residual phase errors, the respective images

are blurred and their quality degrades dramatically. Typically,

autofocus techniques are applied in spotlight operation to cor-

rect the degradation. However, for stripmap modes, the use

of autofocus methods is not straightforward due to a spatially

variant point spread function. We propose modifications to

the existing mosaic phase gradient algorithm to overcome its

drawbacks and to make it more applicable for stripmap syn-

thetic aperture systems.

Index Terms— stripmap, synthetic aperture techniques,

autofocus techniques, mosaic phase gradient autofocus

1. INTRODUCTION

Synthetic aperture imaging is a technique to produce high-

resolution imagery by constantly transmitting pulses while

moving a sensor along a trajectory. Thus, an aperture is syn-

thesized whose length automatically adjusts itself to a range

of interest. This inherently overcomes the drawbacks of con-

ventional imaging techniques, namely the loss in along-track

resolution for increasing range values. However, imprecise

knowledge of the exact sensor location at each transmission

and reception time causes blurred imagery.

The objective of autofocus techniques is to enhance the

quality of the degraded synthetic aperture image. They can be

divided into two groups, depending on the two common oper-

ating modes of synthetic aperture systems, namely stripmap

and spotlight [1]. For the latter, the well-known Phase Gra-

dient Autofocus (PGA) [2] algorithm attains nearly a diffrac-

tion limited restoration of degraded images by compensating

residual phase errors due to unknown path deviations. It is

directly applied to the defocused image, and thus, compu-

tationally convenient. Its applicability has been proven for

a wide-variety of scenes in synthetic aperture radar (SAR).

However, it has some limiting restrictions in its standard ver-

sion, e.g. the point spread function (PSF) has to be identical

for each point in the image, which is only met in spotlight

mode. The authors of [2] introduced the Phase CurvatureAut-

ofocus (PCA) as an attempt to extend the PGA to work for

stripmap synthetic apertures in [3]. For stripmap imaging, the

phase history of collected data is limited by the beamwidth of

the physical aperture capturing only a fraction of the image.

Thus, the PSF is spatially variant and the spotlight approxima-

tions do not hold anymore. The PCA assumes a narrow-band

system to overcome the range dependency and reduces the un-

derlying blurring model to 1-D discarding the 2-D character

of the stripmap blurring function [3, 4]. Therefore, it is rarely

used, especially for sonar applications, where mostly wide-

band signals occur. The Stripmap Phase Gradient Autofocus

(SPGA) algorithm was introduced in [5] to work with less

approximations. However, rather than focusing the blurred

image directly by applying an iterative phase correction in

the wavenumber domain, as do the PGA and PCA, it esti-

mates the path deviations of the imaging platform. After-

wards, it uses the estimated platform path to reconstruct a

new focused image using appropriate synthetic aperture imag-

ing techniques. This procedure requires several iterations to

obtain a well-focused image which leads to a high computa-

tional complexity.

A different approach is introduced in [6], called the mo-

saic Phase Gradient Autofocus (mPGA). Here, the standard

PGA is applied to stripmap synthetic aperture sonar (SAS)

imagery by dividing the entire image into overlapping along-

track segments, which are then treated as spotlight images.

Each stripe is processed individually by the PGA and then

re-assembled. While the mPGA overcomes the range depen-

dency of stripmap phase errors and is computationally attrac-

tive, it does not consider targets at different along-track loca-

tions and, therefore, neglects their varying error information.

This may lead to an emphasis in the focusing of prominent

scatterers, while remaining scatterers of the same stripe are

even more defocused. Additionally, the individual stripe pro-

cessing may cause a linear misalignment during the stitching

process of the along-track segments.

In this paper, we propose a modified version of the mPGA

to alleviate its shortcomings. We account for the along-track

dependency of the motion error by dividing the entire image

into true mosaics, i.e. introducing 2-D sub-images. More-

over, we overcome the linear shift problem, which is induced
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by occurring linear phase errors in the phase estimation of the

PGA, by co-registration of the individual sub-images before

and after each iteration of the autofocusing technique. The va-

lidity of the new approach is demonstrated using simulations

on synthetic data and a full-reference image quality method.

2. SYNTHETIC APERTURE DATAMODEL

Consider a set ofD stationary point scatterers located at posi-

tions [xd, yd]
T , d = 1, . . . , D, with reflectivity σd. The ideal

target scene [1] can be described as

f(x, y) =

D
∑

d=1

σdδ (x+Xc − xd, y − yd) , (1)

for y ∈ [−Y0, Y0] and x ∈ [−X0, X0]

where Y0 and X0 are the boundaries in along-track, y, and
range, x, direction, respectively. Moreover,Xc describes the

standoff distance to the center point of the target scene and

δ (x, y) is the two-dimensional delta function. The convo-

lution between transmitted impulse, p(t), and the ideal tar-

get scene f(x, y) of (1) yields the received synthetic aperture
echo data of a mono-static configuration as

e(u, t) =

D
∑

d=1

σd · p (t− τd(u)) . (2)

In (2), the round-trip delay between the transceiver of the

mono-static configuration located at position [0, u]T and the

dth target is given by

τd(u) =
2

c

√

x2
d + (yd − u)2. (3)

After demodulation and analog to digital conversion, an es-

timate f̂(xn, ym), n = 1, . . . , Nx and m = 1, . . . , Ny , of

the target reflectivity function is obtained by applying a syn-

thetic aperture imaging algorithm, for example time-domain

backprojection [1]. We represent the image reconstruction

technique as a mapping function between the discrete echo

signals, e(ui, tj), with i = 1, . . . ,Mu and j = 1, . . . ,Mt and

the discretized target grid area as

f̂(xn, ym) = I {e(ui, tj)} , (4)

whereMu andMt are the number of slow-time positions and

fast-time samples, respectively.

2.1. Motion Error Model

The advantages of synthetic apertures come along with the

prerequisite of sub-wavelength accuracy of sensor positions.

Otherwise, phase errors are induced causing image degrada-

tion. Of all degrees of freedom of movement, the unknown

displacement in range direction or sway, xe(u), is the most se-

vere. It leads to a significant mismatch between the assumed

echo delay of (3) and the true but unknown round-trip delay

τ̃d(u) =
2

c

√

(xd − xe(u))
2
+ (yd − u)

2
. (5)

Therefore, it represents the main source of blurring for syn-

thetic aperture images [4]. Substituting (5) into (2) yields the

motion error affected echo data ẽ(u, t) and consequently, the

degraded synthetic aperture image, f̃(xn, ym), is obtained af-
ter applying the mapping of (4).

2.2. Image Degradation Model

Autofocus techniques require a degradation model, which re-

lates the focused image to the degraded image by taking into

account the characteristics of the imaging mode. Given an

appropriate model, the phase error can be estimated and cor-

rected accordingly. While for spotlight operation the same

scene is observed for all sensor positions, in stripmap mode

each target contains different information about the path de-

viation function. This is illustrated in Fig. 1(a) and Fig. 1(b)

for targets at different along-track and range position, respec-

tively. In the sequel, the blurring model of both operation

modes is provided.

Using the narrow-beam approximation as well as the

wavenumber transform [1, 4]

u = y −
ky
kx

(Xc − x), (6)

which relates the spatial along-track frequency ky to the aper-
ture position u. Using (6), a relationship between the 2-D

Fourier transformation of the blurred image and ideal image

is provided by

F̃ (kx, ky) ≈ F (kx, ky) e
jkxxe

(

y−
ky

kx
(Xc−x)

)

. (7)

Note that we consider the continuous case here to omit the

subscripts for ease of notation. The relation in (7) represents

the blurring model for stripmap operation. It illustrates the

spatial dependency of the PSF and is only approximate due to

a small change in the stationary phase point in the presence

of sway errors [4].

In case of spotlight operation, which often assumes a

narrow-band system and has a small swath-extent compared

to the standoff range, i.e. X0, Y0 ≪ Xc, the wavenumber

transform simplifies to

u = −
Xc

2kc
ky, (8)

where kc is the wavenumber at the carrier frequency [4].

Thus, the relation between aperture position u and along-

track wavenumber ky is simply a scaling factor. Substituting

(8) into (7) yields

F̃ (kx, ky) = F (kx, ky) e
j2kcxe(ky). (9)
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The relation in (9) shows that sway errors cause a blurring in

along-track but not in range direction for spotlight modes. As

a consequence, spotlight autofocus techniques, e.g. PGA, can

be applied and are able to exploit range redundancy.

A
lo
n
g
-t
ra
ck

Range

f(x, y)

e(u, t)

(a) Different along-track, same range positions

A
lo
n
g
-t
ra
ck

Range

f(x, y)

e(u, t)

(b) Same along-track, different range positions

Fig. 1. Stripmap motion error observed by targets at same

range but different along-track positions (a) and same along-

track but different range positions (b).

3. AUTOFOCUS

In the sequel, we provide a brief review of the PGA and the

mPGA algorithm. For more details, we refer to [2, 6].

3.1. Phase Gradient Autofocus (PGA)

The PGA algorithm is a commonly used method to process

spotlight SAR images which relies solely on the erroneous

image data, f̃(xn, ym), n = 1, . . . , Nx and m = 1, . . .Ny,

and uses the blurring model of (9). It consists of four main

processing steps, which are briefly described subsequently.

Circular Shifting

Circular shifting is done in the image domain and starts with

the selection of the most dominant scatterer for each range bin

xn, n = 1, . . . , Nx and circularly shifts them in y-direction to
the center of the image. This operation removes the targets’

linear phase information, while keeping the phase error infor-

mation. The circular shifted image is denoted by f̃c(xn, ym).

Windowing

A central-symmetric window function w(ym) truncates the

circular shifted image: fw(xn, ym) = fc(xn, ym) · w(ym).
This step dismisses the data of weak targets, which act as

noise and should not contribute to the phase error estimation.

Thus, only data with the highest SNR is taken into account.

The width of the window function is determined based on a

pre-defined drop down of the estimated PSF [2].

Phase Gradient Estimation

The estimation of the phase gradient ∆Φ(kym
) is the core

of PGA and is performed in the along-track wavenumber do-

main, i.e. fw(xn, kym
). The maximum likelihood [2] esti-

mate of the phase error gradient is given by

∆Φ(kym
) = 6

(

Nx
∑

n=1

fw(xn, kym
) · fw(xn, kym−1

)

)

,

for m = 2, . . . , Ny . The unknown path deviation in the

wavenumber domain is then

xe (kym
) = 1/(2kc)

m
∑

n=1

∆Φ(kyn
) with ∆Φ(ky1

) = 0.

Iterative Phase Correction

After removing any linear trend, phase correction is per-

formed by multiplying the conjugate of the estimated phase

error with f̃(xn, kym
). The inverse Fourier transform to the

spatial domain yields the phase corrected image of the current

iteration. The whole process is repeated until convergence,

e.g. the window width does not differ significantly anymore

between two consecutive iterations.

3.2. Mosaic Phase Gradient Autofocus (mPGA)

In [6], a method is introduced to apply the standard PGA algo-

rithm to stripmap images by dividing the image into L over-

lapping along-track stripes. The lth stripe is defined as

fl(xn+(l−1)N ′ , ym), for n = 1, . . . , N ′
x (10)

where (l−1)N ′ is the starting point of stripe l and each stripe
has a width of N ′

x range bins. Choosing a small width, the

range-dependency of the phase error within one stripe is neg-

ligible and thus, can be assumed to be constant. As a conse-

quence, the spotlight error model can be applied. Each stripe

is used as an input for the standard PGA, see Section 3.1, and

is focused separately. The new focused image is reassembled

by stitching together the individually focused stripes.

4. MODIFIED VERSION OF MOSAIC PHASE

GRADIENT AUTOFOCUS

The mPGA accounts for the range dependency of the motion

error xe(u) but it neglects that targets contain different frac-

tions at varying along-track positions as depicted in Fig. 1(a).

In this case, the PGA selects the brightest target, shifts it to

the center followed by windowing. Thereby, other targets are

discarded. Moreover, the estimated phase error is eventually

3
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applied to the entire along-track stripe, ignoring that other tar-

gets suffer from different phase errors. This is demonstrated

in Fig. 2. Here, the targets selected by the PGA are focused

accurately but others in the same stripe are severely blurred

and vanish. Another issue related to the mPGA is the inability

of the PGA to estimate linear phase errors [3, 4]. While a lin-

ear phase error induces an entire image shift in along-track for

the standard PGA, it may lead to varying along-track shifts for

different image stripes causing problems in the reassembling

process as shown in Fig. 3. Although the individual stripes

are focused correctly, the reassembled image is staggered.

To overcome these drawbacks, we propose a modified ver-

sion of the mPGA to account for both, the along-track depen-

dency of the error and varying linear shifts for different im-

age stripes. We call the proposedmethod the modified mosaic

Phase Gradient Autofocus (mmPGA) algorithm.
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(b) Processed by mPGA

Fig. 2. mPGA focusing issue leading to wrong sway estimates

for non-prominent targets displaced in along-track direction.
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Fig. 3. mPGA focusing issue leading to a staggered image es-

timate due to varying linear shifts for different image stripes.

4.1. Modifications

First, different along-track positions of targets are considered

by dividing the image not only in range but also in along-track

direction. Second, the issue of varying linear shifts among im-

age stripes is handled by estimating the individual shifts via

correlation of sub-images before and after applying the PGA.

The block diagram depicted in Fig. 4 provides an overview of

the individual steps of the modified algorithm. The erroneous

input image gets decomposed into sub-images f̃l,k(xn, ym).
Inside such a ”mosaic”, it is assumed that every target is ex-

posed to the same section of the motion error. Thus, the phase

Decomposing

into sub-images
PGA (sub-images) 2D Correlation

Re-assambling

of sub-images

Compensation 

of linear shifts

degraded input image

focused output image

no

yes

stop?

Fig. 4. Block diagram of the proposed modified mPGA

error estimate can be applied to the entire sub-image. To ac-

count for varying shifts in individual sub-images, we correlate

the input sub-images, f̃l,k(xn, ym), and output sub-images,

f̂l,k(xn, ym), for each iteration of the PGA to estimate the

occurring shifts. The correlation of sub-images (l, k) is esti-
mated by

ρ̂l,k(i, j) =

∑

n

∑

m al,k(xn, ym)bl,k(xn+i∆x, ym+j∆y)

σ̂a
l,kσ̂

b
l,k

,

(11)

where
al,k(xn, ym) =

∣

∣

∣
f̂l,k(xn, ym)

∣

∣

∣
− µ̂a

l,k

and

bl,k(xn, ym) =
∣

∣

∣
f̃l,k(xn, ym)

∣

∣

∣
− µ̂b

l,k

are the mean subtracted input and output intensities of the

sub-images. The sample mean and sample standard deviation

of sub-image (l, k) are denoted as µ̂l,k and σ̂l,k , respectively.

Moreover,∆x represents the pixel size in range direction and

∆y in along-track direction. Then, the maximum correlation

determines the spatial shift between sub-images (l, k) as

[imax, jmax] = argmax
i,j

|ρ̂l,k(i, j)| . (12)

Thus, the linear-shift corrected sub-image (l, k) is given by

f̂ ′
l,k(xn, ym) = f̂l,k(xn − imax∆x, ym − jmax∆y). (13)

Note that the shift in range imax typically equals zero since

the linear phase error only yields a shift in along-track direc-

tion and that we only account for entire pixel shifts. For small

correlation coefficients, the estimation of the linear shift is un-

reliable. Consequently, we only consider shifts for which the

correlation coefficient is larger than a certain threshold γ, em-

pirically chosen to be γ > 0.5. Otherwise, the sub-image is

not corrected by the estimated shift. Since this process relies

on the blurred image data, the performance is limited by its

erroneous along-track information. A linear trend in the mo-

tion error xe(u) can still not be estimated by the algorithm,

but rather a linear phase error in the phase estimate of the

PGA. The effect of the proposed modifications are illustrated

in Fig. 5(b). Compared to Fig. 2(b), significant improvements

are visible in the focused image.
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(b) Processed by mmPGA

Fig. 5. Modified mPGA applied to a blurred stripmap image

5. SIMULATIONS

The proposed method has been tested using synthetic data

generated from D = 100 point targets, which have been

placed uniformly at random in a scene of interest of size

Y0 = 3 m, X0 = 5 m and Xc = 25 m. A sinusoidal path

deviation function with an amplitude A = 0.1λc, where λc

is the wavelength at the carrier frequency, and a cycle per

synthetic aperture length frequency of ν = 2 has been set to

deteriorate the reconstruction. A total number of M = 100
experiments have been conducted. Fig. 6(a)-(d) show exam-
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Fig. 6. Illustration of a focusing example showing the ideal

reconstruction of the target scene (a), the blurred image (b)

and the images after applying the PGA (c) and mmPGA (d).

ple results of the ideal reconstructed image in Fig. 6(a), the

blurred image in Fig. 6(b), and the autofocused images using

the PGA in Fig. 6(c) and the proposed method, mmPGA, in

Fig. 6(d). All figures are shown with a dynamic range of

40 dB. Note that the mPGA is not depicted since it has shown

poor performance due to the issues addressed in Section 4.

While the PGA focuses some of the scatterers in the lower re-

gion of the image, the mmPGA is capable to focus the entire

scene. However, it introduces some blocking artifacts. In or-

der to evaluate the simulation results, the structural similarity

index (SSIM) [7] as a full reference image quality measure

has been applied. Note that each image has been registered

with respect to the ideal image before applying the metric.

The outcome is depicted in Fig. 7 for Niter = 10 fixed itera-

tions for each autofocus technique. Iteration q = 0 provides

the SSIM of the blurred image. The curves show the failure of

the PGA and mPGA, which both degrade the blurred image

significantly during the first iteration and then rapidly con-

verge to a low SSIM value. Contrarily, the mmPGA improves

the image quality in the first iteration and then converges.

The latter is important to be able to apply flexible stopping

criteria.
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Fig. 7. SSIM evaluation of autofocus techniques Niter = 10
iterations. q = 0 shows the SSIM of the blurred image.

6. CONCLUSION

We have introduced a modified version of the mPGA algo-

rithm to overcome its shortcomings when focusing stripmap

synthetic aperture imagery. The validity of the proposed

method has been proven using simulations with synthetic

data. As a next step, we will adapt the method to lower the

blocking effects and apply it to real stripmap SAS images.
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