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ABSTRACT
In the context of a disturbance composed of a Low Rank (LR)
clutter plus a white Gaussian noise, the corresponding LR fil-
ters used to detect a target embedded in this disturbance needs
less training vectors than classical methods to reach equiva-
lent performance. Unlike the classical one which is based
on covariance matrix of the noise, the LR filter is based on
the clutter subspace projector. In this paper, we propose a
new estimator of the clutter subspace projector for a distur-
bance composed of a LR Spherically Invariant Random Vec-
tors (SIRV) plus a zero mean white Gaussian noise that does
not require prior information on the SIRV’s texture. Numeri-
cal simulations validate the introduced estimator, and its per-
formance and robustness are tested on a Space Time Adaptive
Processing (STAP) simulation.

Index Terms— Covariance Matrix and Projector esti-
mation, Maximum Likelihood Estimator, Low-Rank clutter,
SIRV, STAP filter.

1. INTRODUCTION

In array processing, such as STAP Radar [1], the optimal filter
in terms of Signal to Noise Ratio (SNR) is composed by the
inverse of the Covariance Matrix (CM) of the noise and the
steering vector. In practice, the CM of the noise is unknown
and have to be primary estimated with a set of secondary data:
K realizations of the noise without any signal of interest. The
CM estimate is then used to process sub-optimal filtering.

The CM estimator typically used is the Sample Covari-
ance Matrix (SCM), which is the Maximum Likelihood Esti-
mator (MLE) of the CM in a Gaussian environment. In this
case, 2m (m is the size of the data) secondary data are needed
to ensure good performance of the sub-optimal filtering, i.e. a
3dB loss of the output SNR compared to optimal filtering [2].
When the noise is composed of a low-rank (LR) clutter plus a
white Gaussian noise, the corresponding sub-optimal filter is
based on the projection of the received data onto the orthogo-
nal subspace of the clutter subspace [3]. Estimating the clutter
subspace projector requires 2r secondary data (r is the clutter
rank, and often r � m in some applications) to reach equiva-
lent performance to the previous scheme [4]. Classically, this

projector estimate is derived from the Singular Value Decom-
position (SVD) of the SCM. Nevertheless, the SCM is not
adapted for a non-Gaussian noise such as heterogeneous clut-
ter and developing filters/detectors on it may lead to poor per-
formance. In this paper, the clutter noise is modeled as SIRVs,
first introduced by [5], known for their good agreement to em-
pirical data sets [6]. A SIRV process is a compound Gaussian
mixture with a random power factor called the texture. The
clutter subspace estimate may be then derived from the SVD
of the Fixed-Point estimator (FPE), which is an approached
MLE of the CM for SIRV noise [7, 8]. However, the FPE is
not the MLE of the CM in the described context: LR-SIRV
plus white Gaussian noise. Moreover, it requires K > m sec-
ondary data to be computed, which does not allow to take full
advantage of the LR assumption in the cases where 2r � m.

In this paper, we propose to develop a direct estimator of
the clutter subspace projector via MLE. This approach had
been inspired by [9], where such an estimator had been given
under several hypothesis: the CM of the low-rank clutter is as-
sumed to have identical eigenvalues, and the Probability Den-
sity Function (PDF) of the texture is assumed known. In this
paper, we propose to relax the second assumption, and there-
fore introduce a new estimator of the clutter subspace projec-
tor with no prior information on the texture PDF in the context
of a LR SIRV clutter plus a white Gaussian noise. This new
estimator is compared with the classical one based on SCM
and those proposed in [9] to quantify the loss of performance
when prior information on texture is not taken into account.
The robustness of the proposed estimator is also studied on a
realistic simulation of STAP Radar, where eigenvalues of the
LR clutter are not identical.

The following convention is adopted: italic indicates a
scalar quantity, lower case boldface indicates a vector quan-
tity and upper case boldface a matrix. H denotes the trans-
pose conjugate operator. C N (a,R) is a complex Gaussian
vector of statistical mean a and of covariance matrix R. Im
is the m × m identity matrix. d̂ is the ML estimate of the
statistical parameter d. {wi}i=1,...,n denotes the set of n el-
ements wi with i = 1, ..., n and whose writing is sometimes
contracted in {wi} .
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2. STATISTICAL MODEL AND EXPRESSION OF
THE LIKELIHOOD FUNCTION

We assume that K secondary data are available. The noise
is modeled as a LR-SIRV process plus an additive zero-mean
complex white Gaussian noise. A realization of a SIRV pro-
cess is a Gaussian random vector with a random power factor
called the texture τi. The texture is here considered as an un-
known deterministic positive parameter. Therefore, each data
zi ∈ Cm, i = 1, ...,K can be described by zi ∼ C N (0,Ri),
with

Ri = σ2Im + τi

r∑
k=1

ckvkv
H
k , (1)

where σ2Im represents the CM of the white Gaussian noise.
The power of this noise σ2 may be considered unitary since
the data can be normalized by it (or its estimate), therefore
σ2 = 1. The CM of the clutter subspace is described by
its rank r, its eigenvalues ck and associated eigenvectors vk,
k = 1, ..., r. The clutter rank r is assumed to be known1.
Moreover, the CM of the clutter will be assumed to have a
low-rank structure (r � m). We will also, as [9], assume
that ck = 1 for k = 1, ..., r. Thus, by denoting the clutter
subspace projector Πc =

∑r
k=1 vkv

H
k , the simplified CM is:

Ri = Im + τiΠc (2)

The hypothesis of equals ck is mainly imposed by tractability
purpose. Nevertheless section 4.3 will show that the estimator
derived from this model seems robust to an inequality of the
ck’s. A possible interpretation of (2) is that we consider that
the texture τi "absorbs" the factors ck: The average power of
the clutter is uniformly applied over its corresponding sub-
space.

In [9], the texture τi is treated as a random variable with a
known PDF. This hypothesis of prior knowledge is restrictive
in practical cases, where the texture is unknown and even its
PDF is not usually available. Therefore, τi is considered in
this paper as an unknown deterministic parameter. The likeli-
hood of the data, conditioning to Πc and {τi}i=1,...,K is then:

f(z1, ..., zK |Πc, {τi}) =
K∏
i=1

e−zHi R−1
i zi

πm|Ri|
(3)

Since R−1i = (I − Πc) +
1

1+τi
Πc and |Ri| = (τi + 1)r,

equation (3) becomes:

f(z1, ..., zK |Πc, {τi}) =
K∏
i=1

e
−zHi (In−

τi
1+τi

Πc)zi

πm(τi + 1)r
(4)

One can then express the log-likelihood function of the data

1In classical STAP, r can be evaluated thanks to the Brennan rule [10].

set:

ln(f(z1, ..., zK |Πc, {τi})) = −
K∑
i=1

zHi zi

+

K∑
i=1

τi
1 + τi

zHi Πczi −Km lnπ − r
K∑
i=1

ln(τi + 1) (5)

Let us now address the problem of the estimation of Πc.
Since Πc =

∑r
k=1 vkv

H
k , the problem is directly equiv-

alent to the estimation of a basis of the clutter subspace
{vk}k=1,...,r.

3. ML ESTIMATOR OF THE CLUTTER SUBSPACE

3.1. Expression of the clutter subspace MLE

The estimation method goes as follows: the MLEs of the un-
known textures τi, i = 1, ...,K, are firstly determined from
(5), these parameters are then replaced by their MLEs expres-
sions in (5) to obtain the generalized log-likelihood f̂ and fi-
nally this functional (plus a normalization constraint function)
is derived with respect to vk, k = 1, ..., r which leads to the
expression of the clutter subspace basis MLE.

Lemma 3.1 The MLE under positivity constraint of τi, i =
1, ...,K conditional to Πc, denoted τ̂i, is:

τ̂i =

{
1
rz
H
i Πczi − 1 if ||Πczi||2 > r

0 else (6)

Proof By taking the derivative of the expression (5) with re-
spect to (w.r.t.) τi, for a specific i ∈ 1, ...,K:

∂ ln(f(z1, ..., zn|τi))
∂τi

=
zHi Πczi
(1 + τi)2

− r

τi + 1
(7)

This equation is canceled to identify τ̂i, the MLE of τi. Nev-
ertheless the texture is known to be a positive value. Since
the likelihood is strictly decreasing after his maximum τ̂i, the
MLE under the positivity constraint is given by (6).

Proposition 3.2 The ML basis of the clutter subspace is de-
fined by the {v̂k}k=1,...,r that are the r most important eigen-
vectors of the matrix M̂(Πc):

M̂(Πc) =

K∑
i=1

τ̂i
τ̂i + 1

ziz
H
i (8)

Proof The τi’s, are replaced in (5) by their MLE expres-
sion τ̂i, i = 1, ...,K in order to obtain the generalized log-
likelihood f̂ :

ln(f̂(z1, ..., zn|v1, ...,vr)) = −
K∑
i=1

zHi zi

+

K∑
i=1

zHi Πczi −Km lnπ −Kr − r
K∑
i=1

ln(
1

r
zHi Πczi) (9)
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The vectors vk, k = 1, ..., r must form a basis of the clut-
ter subspace estimate. Thus, the maximization of f̂ with re-
spect to the vk’s must be done under a normalization con-
straint. Nevertheless, imposing an orthogonality constraint is
not necessary since the solution will appear as eigenvectors of
an unique matrix and therefore inherently orthogonal to each
other. The functional g to maximize w.r.t the vk’s is:

ln(g(z1, ..., zK)) = −
K∑
i=1

zHi zi

+

K∑
i=1

r∑
k=1

zHi vkv
H
k zi −Km lnπ −Kr

−r
K∑
i=1

ln

(
1

r

r∑
k=1

zHi vkv
H
k zi

)
+

r∑
k=1

λk(v
H
k vk − 1) (10)

where λk, k = 1, ..., r are Lagrange multipliers associated
to the normalization constraint. The functional g is differen-
tiated, then canceled w.r.t. vHj for a specific j ∈ 1, ..., r to
obtain the expressions of the clutter subspace vectors estima-
tors:

∂g(z1, ..., zK)

∂vHj
= 0⇔

K∑
i=1

ziz
H
i vj − r

K∑
i=1

ziz
H
i vj

zHi
(∑r

k=1 vkvHk
)
zi

= λjvj , (11)

where the expression of the τ̂i’s given from Lemma 3.1 is
identified:

(11)⇔

(
K∑
i=1

τ̂i
τ̂i + 1

ziz
H
i

)
vj = λjvj (12)

Thus, the ML basis of the clutter subspace is defined by the
{v̂k}k=1,...,r that are the r most important eigenvectors of the
matrix M̂(Πc):

M̂(Πc) =

K∑
i=1

τ̂i
τ̂i + 1

ziz
H
i (13)

One may notice that the matrix defining the {v̂k} is a
SCM of the data scaled by a factor that give more weight to
zi’s with a strong Clutter to Overall Noise Ratio (CONR).
This factor is in fact the CONR of the considered zi MLE,
which expression depends on the texture estimates. In other
words, realizations that contain more power in the subspace of
interest are given more significance in the estimation process.

3.2. Remark on computation

Proposition 3.2 gives an expression where the clutter sub-
space estimator is depending on this subspace itself. Indeed,
Πc is estimated using τ̂i, which is estimated conditioning to

Πc. The same problem appears in [9], and have been solved
by using an Expectation-Maximization (EM) [11] approach
which leads to a recursive algorithm. We propose in this pa-
per an equivalent algorithm to approach the fixed point of the
MLE solution of proposition 3.2. The process consists in es-
timating the τ̂ (n)i ’s with

τ̂
(n)
i =

{
1
rz
H
i Π̂

(n)
c zi − 1 if ||Π̂(n)

c zi||2 > r
0 else

(14)

then on picking out the r most important eigenvectors of the
matrix:

M̂(n+1)(Π̂(n)
c ) =

K∑
i=1

τ̂
(n)
i

τ̂
(n)
i + 1

ziz
H
i (15)

to obtain the updated clutter subspace projector estimate
Π̂

(n+1)
c . This algorithm is an alternate maximization of the

function f̂ (bounded), therefore its convergence is ensured.
Nevertheless, it could reach local maximums of the function
and should be carefully initialized. Π

(0)
c will be here given by

the r most important eigenvectors of the SCM since it is, as
discussed in [9], good initial guess. The convergence of this
algorithm will also be illustrated by simulations in section
4.1.

4. SIMULATIONS RESULTS

This section deals with numerical simulations to illustrate
the performance of the proposed estimator. Two criteria
of performance are studied. The first one, called Power-
Suppression [9], represents the average "accuracy" of the
subspace estimation. The second one, the Signal to Interfer-
ence plus Noise Ratio (SINR) [1] loss, is linked to classical
STAP Radar filtering performance.

For comparison purposes, two clutter subspace MLEs pre-
sented in [9] are briefly recalled:

• Clutter subspace estimator with known texture :
This correspond to the optimal estimation procedure
but is not realizable in practice. It will be used as a
theoretical benchmark. If the texture τi is known for
each realization, the ML basis of the clutter subspace is
defined by the {v̂k}k=1,...,r that are the r most impor-
tant eigenvectors of the matrix M:

M =

K∑
i=1

τi
τi + 1

ziz
H
i (16)

• Clutter subspace estimator with known texture PDF :
If the texture PDF, denoted fτ , is known, the ML basis
of the clutter subspace is defined by the {v̂k}k=1,...,r

that are the r most important eigenvectors of the matrix

3
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Mf :

Mf =

K∑
i=1

[
1 +

h′
(∑r

k=1 zHi vkv
H
k zi

)
h
(∑r

k=1 zHi vkvHk zi
) ] ziz

H
i ,

(17)
with

h(q) =

∫ ∞
0

exp−q/(1 + τi)

(1 + τi)r
fτ (τi)dτi (18)

4.1. Convergence of the algorithm
For these simulations, secondary data have been generated
according to the LR clutter plus white Gaussian noise model
specified in Eq. (2). The PDF associated to the texture is here
a discrete law of the form:

fτ (y) =

NY∑
n=1

pnδ(y − an) (19)

The values of the parameters of fτ have been set to: NY = 3,
(a1, a2, a3) = α(0.1, 1, 100) and (p1, p2, p3) = (0.5, 0.4, 0.1).
The factor α is a parameter used to set the Clutter to Noise
Ratio (CNR).

Fig. 1. Mean Log-Likelihood (on 1000 trials) in function of the algorithm
step. m = 15, r = 3, CNR = 0dB

Figure 1 shows the convergence of the algorithm de-
scribed in 3.2 to compute the proposed estimator. It presents
the mean Log-Likelihood (on 1000 trials) versus the algo-
rithm step.

4.2. Power Suppression
Theses simulations present a comparison between the pro-
posed estimator, the classical one and those based on Eqs (16)
and (17). Secondary data have been generated as in the previ-
ous section. The criterion used to compare the methods is the
Power Suppression [9], namely:

Power-Suppression = 20 log10(sin(φ)), (20)

where φ is the maximum angle between the estimated sub-
space and the true one.

Figure 2 shows the Power-Suppression evolution with re-
spect to K and CNR with 3 iterations for the iterative esti-
mators. As it could be expected, the performance of our new

Fig. 2. Power-Suppression mean on 10000 iterations for K varying with
CNR = 0dB (left) and for CNR varying with K = 60 (right). For clutter
subspace estimator derived from the SCM (dark blue), the proposed estimator
(light blue), MLE with known texture (black) and MLE with known texture
PDF (red). m = 15, r = 3.

estimator is better than the classical one based on SCM, espe-
cially for large K and low CNR. Indeed, if the CNR is high
enough, the performance of the SCM estimator is equivalent
to the others due to the small contribution of the white Gaus-
sian noise relatively to the LR-SIRV process. The method of
[9] performs better estimation than the proposed method but
cannot be used in practice if the texture PDF is unknown.

4.3. STAP simulations
STAP [1] is applied to airborne radar in order to detect mov-
ing targets. Typically, the radar receiver consists in an array
of Q antenna elements processing P pulses in a coherent pro-
cessing interval (m = PQ). In this framework, we assume
that the received signal z is a complex known signal d cor-
rupted by an additive disturbance n which follows the gen-
eral noise model described in Eq. (1) and therefore does not
follows the assumption c1 = ... = cr = 1.

z = d + n (21)

With a LR clutter, it is well known that a correct sub-optimal
filter is [3, 4]:

ŵlr = Π̂⊥c d =
(
Im − Π̂c

)
d (22)

We assume to have K secondary data zi ∼ C N (0,Ri)
which only contain the disturbance to estimate the clutter sub-
space projector and then process the filtering of z. Of course,
the performance of the LR filters will directly rely on the ac-
curacy of the estimation of Πc. To evaluate the performance
of a sub-optimal filter, the SINR [1] loss is currenlty used:
it is the ratio between the SINRout, computed for ŵlr, and
SINRmax computed for the optimal filter w = R−1d. We
compare the LR STAP filter built from our new estimator of
the subspace projector with the one built from the subspace
projector derived from the SCM.

We consider the following STAP configuration. The num-
ber Q of sensors is 8 and the number P of coherent pulses is

4
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also 8. The center frequency and the bandwidth are respec-
tively equal to f0 = 450 MHz and B = 4 MHz. The radar
velocity is 100 m/s. The inter-element spacing is d = c

2f0
(c is the celerity of light) and the pulse repetition frequency
is fr = 600 Hz. The clutter rank is computed from Brennan
rule [10] and is equal to r = 15 � 64, therefore, the low
rank assumption is valid. The texture PDF is a Gamma law of
shape parameter ν = 0.1 and scale parameter 1

ν .

4.3.1. SINR Loss

Figure 3 shows the SINR Loss evolution with respect to K
and CNR. We notice that the LR STAP filter built from our
estimator still outperforms the LR classical one, which shows
the robustness of the approach relative to the hypothesis of
equals ck. Moreover, it reaches performance close to the theo-
retical optimum. Nevertheless, for highCNR, both LR STAP
filters have slightly the same performances. Due to complex-
ity of computation of the term (17), filter based on it is not
included in this simulation, which is also justified by the fact
that the texture PDF is a priori unknown in this application.

Fig. 3. SINR loss mean on 1000 iterations for K varying with CNR =
0dB (left) and for CNR varying with K = 384 (right). For clutter subspace
estimator derived from the SCM (dark blue), the proposed estimator (light
blue) and MLE with known texture (black). m = 64, r = 15.

4.3.2. Filter output

For this simulation, a target with a SNR of 0 dB at {40 m/s,
20 deg} is observed in an heterogeneous clutter environment.
The total number of secondary data used to estimate Πc is
K = 30. The clutter to noise ratio is 0 dB. Figure 4 presents
the output of LR STAP filters based on respectively the SCM
and estimator from proposition 3.2. It illustrates that the pre-
sented estimator allows to ensure a detection with lower false
alarm rate than with the estimator derived from the SCM since
it provides a better interference rejection.

5. CONCLUSION

In this paper has been introduced a new MLE of the clutter
subspace projector in the context of a low-rank SIRV plus
white Gaussian noise which outperforms the classical estima-
tor based on the SCM. This estimator does not require prior

Fig. 4. Filter outputs realized with LR STAP filters built from Π̂c estimated
through SCM (left) and the proposed MLE (right).

knowledge on the texture to be computed. This approach
leads, of course, to a loss of performance compared to esti-
mators presented in [9] (with known texture or known texture
PDF), but allows to perform an estimation in less restrictive
contexts: for example in STAP Radar filtering where no in-
formation on the texture is available. Moreover, the presented
estimator seems robust to a model variation induced by non
equal eigenvalues of the clutter subspace covariance matrix,
which is likely in a realistic context.
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