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ABSTRACT

In phased array antennas, by varying the complex element
weights beam patterns with desired shapes can be synthesized
and/or steered to desired directions. These complex weights
can be implemented by using amplitude controllers and phase
shifters at the system level. Since controlling the phase ofan
RF signal is much easier than controlling its power, many sys-
tems do not have an individual amplitude controller for each
element. Hence, beam shaping and steering are to be achieved
by varying only the element phases. In this work, a new ap-
proach is proposed for phase-only beam synthesis problem.
In this approach, the phase-only beam synthesis is formulated
as a non-convex quadratically constrained quadratic problem
(QCQP). Then, it is relaxed to a convex semidefinite prob-
lem (SDP), which generally provides an undesired high rank
solution. An iterative technique is developed to obtain a rank-
1 solution to the relaxed convex SDP. Conducted experiments
show that, proposed method can successfully synthesize beam
shapes with desired characteristics and steering directions by
using only the element phases.

Index Terms— phased array antenna, beam pattern,
quadratically constraint quadratic problem, semidefinite
problem, convex relaxation

1. INTRODUCTION

Phased array antennas are used in many applications such as
airport surveillance, missile detection and tracking, magnetic
resonance imaging, etc., because of their electronic scanning
capabilities [1]. Operating frequency and positions of thear-
ray elements define the main characteristics of the antenna
pattern. By applying different complex weights to the array
elements, the beam pattern can be steered to different direc-
tions. Moreover, its shape can also be modified, i.e., side-
lobe levels can be suppressed, mainlobe beamwidht can be
reduced, etc. These complex weights are implemented as
amplitude controllers and phase shifters at the system level.
Since controlling the phase of an RF signal is much easier
than controlling its power, many systems do not have an in-
dividual amplitude controller for each element. Hence, beam
synthesis by only varying the element phases assuming that

all the elements are operating at the same power level is de-
sired.

Since the beam pattern is a non-linear function of the el-
ement phases, there is no previously proposed method for
approaching the problem from the convex optimization per-
spective. Generally, ant colony based optimization methods
(particle swarm optimization, genetic algorithm, vs.) areused
to minimize a certain cost function of element phases [2, 3].
Null insertion to the undesired spatial directions by varying
element phases are studied in [4, 5, 6, 7]. An iterative method
based on generalized projections is proposed in [8], resulting
in a common amplitude and various phases distributions for
different steering directions.

In this work, different from the previous approaches,
we first constructed a non-convex quadratically constraint
quadratic problem (QCQP) to model the problem. Then, we
relaxed it to a convex semidefinite problem (SDP), which can
be solved at the global optimum point in polynomial time.
Although the resulting SDP is convex, its optimal solution
is generally not a rank-1 matrix [9]. To achieve a rank-1
solution, we propose a novel iterative method, where in each
step a SDP with additional convex constraints are solved. We
show that, after a few iterations, the optimal solution of the
constructed SDP has very fast decaying singular values, con-
verging to a rank-1 solution. Conducted experiments show
that, proposed method can successfully design beam patterns
with desired characteristics and steering directions by using
only element phases.

In Section-2, mathematical definition of the problem is
given. In Section-3, proposed method is detailed. Section-4
is reserved for experimental results. Concluding remarks are
provided in Section-5. Through out the paper, bold characters
will denote vectors for minuscules and matrices for capitals.
(.)T will denote the transposition operation and‖.‖ will de-
note theL2 norm of its argument.

2. PROBLEM DEFINITION

Let pn, n = 1, ..., N denote the positions of antenna ele-
ments, wherepn = [pn,x, pn,y, pn,z]

T . The beam pattern is
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given by

B(θ, φ) =

N
∑

n=1

αnvn(θ, φ), (1)

wherevn(θ, π) = exp{j 2π
λ
pT
na}. The directional cosines is

defined asa = [sin θ cosφ, sin θ sinφ, cos θ]T , λ is the wave-
length of transmission andαn, n = 1, ..., N are the complex
antenna weights. By changing the weights, antenna beam can
be steered to different directions, its sidelobe levels, main-
lobe power and beam width can be controlled. For phase-
only beam synthesis problem, all the antenna weights are
constrained to have the same magnitude. Hence, phase-only
beam synthesis problem can be described by the following
feasibility problem:

findα1, ..., αN

s.t. |B(θm, φm)|2 ≥ δm,

|B(θs,k, φs,k)|2 ≤ δs, ∀k = 1, ...,K,

|αn|2 = δp, ∀n = 1, ..., N,

|B(θm, φm)|2 > |B(θm,h, φm,h)|2, ∀h = 1, ..., H.
(2)

Here, (θm, φm) is the steering direction,δm is the allowed
minimum power level at the steering direction.(θs,k, φs,k), k =
1, ...,K are the sidelobe directions for which the maximum
allowed power level isδs andδp is the operating power level
of the all antenna elements. The last constraint is to force
the power pattern to have its highest peak at the steering
direction, which is critical especially for direction finding ap-
plications. In Fig.1, these constraints are shown. The power
pattern given in this figure belongs to a uniform linear array
with 21 elements, where the antenna weights are chosen as
αn = v⋆n(θm, φm) to maximize the power at the steering
direction. The feasible set for constraints in (2) is generally
empty. To ensure a non-empty feasible set, we transform the
weight design problem in (2) to the following optimization
problem:

max
α∈CN

‖α‖2

s.t. |αTvm|2 ≥ δm,

|αTvs,k|2 ≤ δs, ∀k = 1, ...,K,

|αn|2 ≤ δp, ∀n = 1, ..., N,

|αTvm|2 > |αTvm,h|2, ∀h = 1, ..., H, (3)

where vm = [v1(θm, φm), v2(θm, φm), .., vN (θm, φm)]T ,
vs,k = [v1(θs,k, φs,k), v2(θs,k, φs,k), .., vN (θs,k, φs,k)]

T ,
vm,h = [v1(θm,h, φm,h), v2(θm,h, φm,h), .., vN (θm,h, φm,h)]

T

andα = [α1, α2, .., αN ]T . In this formulation, sum of the
energies of antenna weights is to be maximized, sidelobe and
mainlobe constraints of (2) are preserved and ‘=’ constraints
on the energy of the antenna weights are replaced with ‘≤’

Fig. 1. Design constraints in (2).δm andδs define the min-
imum allowed mainlobe power and maximum allowed side-
lobe power, respectively.(θm, φm) is the steering direction.
(θs,k, φs,k), k = 1, 2, ..,K define the sidelobe constraints.
(θm,h, φm,h), h = 1, 2, .., H define the ‘highest peak at the
steering direction’ constraint (last constraint in (2)).

constraints. Hence, the feasible set of (3) is guaranteed to
be non-empty for reasonable choices ofδm, δs andδp. If the
feasibility problem in (2) has a solution, then it would alsobe
an optimal solution for (3).

The optimization problem in (3) has dimensionN where
the optimization variables are complex numbers. It can equiv-
alently be formulated as a2N dimensional optimization prob-
lems in real variables:

min
β∈R2N

− β
T
β

s.t.βTVmVT
mβ ≥ δm,

βTVs,kV
T
s,kβ ≤ δs, ∀k = 1, ...,K,

βTWT
nWnβ ≤ δp, ∀n = 1, ..., N,

βT
(

VmVT
m −Vm,hV

T
m,h

)

β ≥ ǫ, ∀h = 1, ..., H,

(4)

whereβ =

[

ℜ{α}
ℑ{α}

]

, Vm =

[

ℜ{vT
m}, −ℑ{vT

m}
ℑ{vT

m}, ℜ{vT
m}

]

, Vs,k =
[ℜ{vT

s,k}, −ℑ{vT
s,k}

ℑ{vT
s,k}, ℜ{vT

s,k}

]

,Vm,h =

[ℜ{vT
m,h}, −ℑ{vT

m,h}
ℑ{vT

m,h}, ℜ{vT
m,h}

]

,

Wn is an 2 × 2N matrix composed of all zeros except
Wn(1, n) = 1 andWn(2, N + n) = 1, andǫ is a positive
number very close to zero. Note that the maximization in (3)
is converted to a minimization in (4).

For notational simplicity, we further define the following
matricesA = VmVT

m, Bk = Vs,kV
T
s,k, Cn = WT

nWn,
Dh = VmVT

m −Vm,hV
T
m,h and rewrite (4) as the follow-

ing quadratically constrained quadratic problem (QCQP) with

2
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non-convex cost function and non-convex constraints, which
can not be solved at the global optimum point in polynomial
time:

min
β∈R2N

− βTβ

s.t.βTAβ ≥ δm,

βTBkβ ≤ δs, ∀k = 1, ...,K,

βTCnβ ≤ δp, ∀n = 1, ..., N,

βTDhβ ≥ ǫ, ∀h = 1, ..., H. (5)

In the next section proposed method for solving the optimiza-
tion problem in (5) will be detailed.

3. PROPOSED METHOD: ITERATIVE
SEMIDEFINITE RELAXATIONS WITH RANK

REFINEMENT

Since the matrices in (5)A, Bk, k = 1, ...,K, Cn, n =
1, ..., N andDh, h = 1, ..., H are all symmetric, the QCQP
in (5) can be equivalently written as:

min
Λ∈R2N×2N

Tr{−Λ}

s.t.Tr{AΛ} ≥ δm,

T r{BkΛ} ≤ δs, ∀k = 1, ...,K,

T r{CnΛ} ≤ δp, ∀n = 1, ..., N,

T r{DhΛ} ≥ ǫ, ∀h = 1, ..., H,

Λ is symetric and positive-semidefinite,

rank(Λ) = 1. (6)

Note that the optimization variable in (6) is a matrixΛ ∈
R2N×2N . If βopt is an optimal solution for (5), thenβoptβopt

T

is an optimal solution for (6). However, (6) is still an NP hard
problem because of the rank constraint. By removing the
rank constraint, it can be relaxed to a convex SDP which can
be solved efficiently in polynomial time [9]:

min
Λ∈R2N×2N

Tr{−Λ}

s.t.Tr{AΛ} ≥ δm,

T r{BkΛ} ≤ δs, ∀k = 1, ...,K,

T r{CnΛ} ≤ δp, ∀n = 1, ..., N,

T r{DhΛ} ≥ ǫ, ∀h = 1, ..., H,

Λ is symetric and positive-semidefinite. (7)

However, optimal solutionΛopt of (7) is in general not rank-
1. A rank-1 approximate ofΛopt can be formed as

Λ̃opt = σ1u1u
T
1 , (8)

whereλ1 is the largest singular value ofΛopt andu1 is the
corresponding left singular vector. Then a candidate solution

Algorithm 1 Iterative semidefinite relaxations with rank re-
finement:

1: %Initializations
2: i← 0.
3: ζi = 1.
4: r(i) = 1.
5: FindΛi

opt by solving (7).
6: Apply SVD to Λi

opt and find its singular valuesσi
1 ≥

σi
2 ≥ .. ≥ σi

2N and the corresponding left singular vec-
torsui

1,u
i
2, ..,u

i
2N .

7: β̃
i
=

√

σi
1u

i
1.

8: Computer(i) by using (11).
9: while i ≤ Niter andr(i) ≥ ν do

10: Attach
(ui

k)
TΛ(ui

k)
T ≤ ζi

1

2N

∑2N

n=1
σi
n ∀k = 2, 3, .., 2N

constraints to (7) and resolve it for findingΛi+1
opt .

11: Apply SVD to Λi+1
opt and find its singular values

σi+1
1 ≥ σi+1

2 ≥ .. ≥ σi+1

2N and the corresponding left
singular vectorsui+1

1 ,ui+1
2 , ..,ui+1

2N .

12: β̃
i+1

=
√

σi+1
1 ui+1

1 .

13: Computer(i + 1) by using (11).
14: if Tr{−Λi+1

opt } ≤ Ot then
15: ζi+1 ← µζi.
16: end if
17: i← i+ 1
18: end while
19: Form complex weights:̃αi = Ŵβ̃

i

20: Normalize complex weights:α̂i
n = δpα̃

i
n|α̃i

n|, n =
1, ..., N.

for the QCQP in (5) can be constructed as

β̃ =
√
σ1u1. (9)

However, since optimal solutionΛopt of (7) is not rank-1,
the candidate solutioñβ can be an infeasible point or a non-
optimal solution for (5). Since the QCQP in (5) and its equiv-
alent formulation in (7) are NP hard, the convex semidefinite
relaxation in (7) can not be forced to have a strictly rank-
1 optimal solution. However, it can iteratively be forced to
have optimal solution matrix with fast decaying singular val-
ues, hence approximating to a rank-1 solution. LetΛi

opt be
the optimal solution of (7) at theith step of the iterative algo-
rithm. Assumeσi

1 ≥ σi
2 ≥ ... ≥ σi

2N are the singular values
andui

1,u
i
2, ...,u

i
2N are the corresponding left singular vec-

tors ofΛi
opt. Then, the following2N − 1 convex quadratic

constraints

(ui
k)

TΛ(ui
k)

T ≤ ζi
1

2N

2N
∑

n=1

, ∀k = 2, ..., 2N (10)

are attached to (7) and it is resolved. Here,ζi is the prede-
fined multiplier which we initially choose asζi = 1. If the

3
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Fig. 2. Uniform linear array withN = 21 elements

objective value−Tr{Λi+1
opt } is less than a predefined target

objective valueOt, then the multiplier at iterationi+1 is up-
dated asζi+1 ← µζi, where0 < µ < 1 is the parameter
controlling the convergence rate of the algorithm. After finite
number of iterationsNiter or the difference between energy
ratio of highest singular value ofΛi

opt between two consecu-
tive iterations, i.e.,

r(i) =

∣

∣

∣

∣

∣

σi
1/

2N
∑

n=1

σi
n − σi−1

1 /
2N
∑

n=1

σi−1
n

∣

∣

∣

∣

∣

(11)

is smaller than a certain thresholdν, iterations are terminated
and the final solution of (5) is obtained as:

β̃
i
=

√

σi
1u

i
1. (12)

Corresponding complex antenna weight vector is given by

α̃i = Ŵβ̃
i
, (13)

whereŴ is anN × 2N matrix composed of all zeros except
Ŵ(n, n) = 1,Ŵ(n,N + n) = j, ∀n = 1, ..., N . If the
value of the cost function in (7) evaluated at the optimal so-
lution Λi

opt at the final iteration is greater than−N , then the
complex antenna weights̃αi

n, n = 1, ..., N do not satisfy the
power constraint in (2). Hence, weights are finally normalized
as:

α̂i
n = δpα̃

i
n/|α̃i

n|, n = 1, ..., N. (14)

In Algorithm-1, proposed iterative method is summarized. In
the next section experimental results demonstrating the per-
formance of the proposed method will be provided.

4. EXPERIMENTAL RESULTS

To investigate the performance of the proposed method, we
used a uniform linear array withN = 21 elements shown in
Fig.2. Element positions arepn = [d(n − 1), 0, 0]T , n =
1, ..., N . Inter element spacing isd = 0.4λ, whereλ is
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0
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20

30

φ (θ=0 cut) [Degree]

|B
(θ

,φ
)|

2  [d
bM

]

 

 

after iteration 1
after iteration 20

Fig. 3. θ = 0 degree cut of the power pattern for steering di-
rection(θp = 0, φp = 90)degree computed using the weights
found after iterationi = 1 (solid) andi = 20(dashed-dotted)

the wavelength, and operating frequency is chosen asf =
2GHz. As design constraints, we allow 5dB power reduction
in the steering direction (δm = 10 logN2−5 dB) and require
23 dB sidelobe suppression (δs = 10 logN2 − 23 dB). The
beamwidth measured at 23 dB below the maximum power
level (10 logN2) around the steering direction is constrained
to be less than 15 degree in azimuth. All the antenna elements
are required to operate at 1 Watt power level (δp = 1). The
proposed method in Algorithm-1 is initialized with parame-
tersNiter = 20, ν = 0.01 for steering direction in azimuth
φp = 90 degree and in elevationθp = 0 degree. For solving
the SDP in (6), we used CVX, a package for specifying and
solving convex programs [10].

After the first iteration, optimal value of the SDP in (7) is
found to be -21. However, since the provided solution is not
rank-1, the total power of the antenna elements is‖α̃1‖2 = 8,
much smaller than 21. Hence the normalized coefficientsα̂

1

differ from the computed ones̃α1 much. In Fig.3, elevation
θ = 0 cut of the power pattern generated by using the nor-
malized complex weight vector after iterationi = 1 (α̂1) is
plotted (solid). As observed, resulting beam pattern do not
satisfy the design constraints. After 20 iterations, stillthe op-
timal value of the SDP in (7) is computed to be -21, the opti-
mal solution matrixA20

opt is nearly rank-1 and the total power
of the antenna elements is‖α̃20‖2 = 20.88. Hence the nor-
malized coefficientŝα20 are nearly the same with̃α20. The
resulting pattern after iteration 20 is plotted (dashed-dotted).
As observed, all the design constraints are satisfied.

In Fig.4, the ratio of the largest singular value of the opti-
mal solution matrixΛi

opt of (7) to the sum of all its singular

values as a function of iteration numberi, i.e.,σi
1/

∑2N

n=1
σi
n,

is plotted. As observed, at iterationi = 20, the solution ma-
trix Λi is nearly rank one, since the largest singular value

4
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Fig. 4. Ratio of the largest singular value of the optimal solu-
tion matrixΛi

opt of (7) to the sum of all its singular values as
a function of iteration numberi.
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After iteration 1
After iteration 3
After iteration 20

Fig. 5. 10 largest singular values ofΛi
opt at iterationi = 1,

i = 3, i = 10.

occupies most of its energy. Note that, as the iteration num-
ber increases, this ratio increases, demonstrating the converge
behaviour of the proposed iterations. In Fig.5, 10 largest sin-
gular values ofΛi

opt at iterationi = 1, i = 3, i = 10 are plot-
ted. In the first iteration, singular valuesΛ1

opt have a small
decay rate. After iteration 3, singular values have a fasterde-
cay. At iteration 20, most of the energy is accumulated in the
first singular value and the remaining ones are very close to
0. Hence, the proposed iterations provided a rank-1 solution
to (7).

5. CONCLUSIONS

In this work, we proposed a novel iterative method for the
phase-only beam synthesis problem. First, desired weights
are formulated to be the solution of a non-convex QCQP.

Then, the QCQP is relaxed to a convex SDP. Proposed it-
erations constrain the optimal solution of the SDP to have
fast decaying singular values. After a few iterations, ob-
tained solution is observed to be nearly rank-1. Conducted
experiments indicate that, proposed method has a certain con-
vergence behaviour and can successfully design beam shapes
with desired characteristics by only using element phases.
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