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ABSTRACT

The use of 3D imaging techniques is a choice approach for the
study of the inner structure of materials. However, for large
industrial applications, the stereological analysis of 2D snap-
shots of material sections is still necessary for obvious time
and cost reasons. We present a novel method to analyze the
3D layout of cylindrical structures from a single 2D section.
In particular we propose to estimate the distribution of cutting
angles i.e. angles between the cylinders axis and the normal to
the image plane. Contrary to existing approaches, the knowl-
edge of the cylinder cross section shape is not a prerequisite.
The only required input is the statistical distribution of the
cylinder cross section area. Our approach is based on the min-
imization of a least squares criterion under linear constraints.
It is evaluated on synthetic data and applied to microscopy im-
ages of fibrous composites. Our experimental study focuses
on the capabilities and limitations of the approach.

Index Terms— microscopy, stereology, cylinder, orienta-
tion, fibrous structures

1. INTRODUCTION

In material science, exploring the three dimensional structure
of materials is essential to understand and predict their phys-
ical properties and behavior. In the case of composite struc-
tures, parameters of interest are for instance the volume ratio,
the shapes, the sizes and the spatial distribution of the objects
composing the material. In particular, the mechanical proper-
ties of woven fibrous composites closely depend on the actual
3D layout of its fibers. Even if fiber layout is meant to be con-
sistent with the nominal manufacturing process, it may show
some discrepancies in practice and has to be controlled by ar-
tificial vision. Although 3D imaging techniques like tomogra-
phy or ultrasounds can provide direct descriptions of the ma-
terial volume, such imaging techniques may be too expensive
and not technically appropriate in many cases. For instance,
when imaging composite structures at microscopic scale, the
use of tomography requires a compromise between resolu-
tion and sample size, while optical microscopy or electron
microscopy are much easier to use in practice. Confocal mi-
croscopy [1] also allows to obtain 3D images of a material but

its use requires expensive equipment and implies drastic sam-
ple preparation. Another simple approach that does not need
3D imaging is the dissector [2, 3], a stereological technique
based on the observation of thin parallel contiguous slices of
the material. However, obtaining perfectly parallel slices of
an acceptable thickness is quite laborious in practice.

It is also possible to get valuable information about 3D
materials from a single 2D image. Stereological techniques
allow to extract 3D quantitative measurements from plane
sections, especially in the case of silple geometric objects
such as spheres, ellipsoids or cylinders [4, 5]. When deal-
ing with anisotropic structures, even 3D orientation can be
deduced from 2D. For instance, in the case of fiber compos-
ites [6] or cubic metallic structures [7, 8], hypotheses about
the shape and spatial distribution of objects allow to relate 3D
geometry to the shape and spatial layout of 2D sections.

In this paper, we are interested in fibrous structures that
can be modelled by generalized cylinders with arbitrary
shape. We aim at analyzing their 3D layout from 2D. More
precisely, we want to estimate their cutting angle i.e. the
angle formed between their 3D axis and the normal to the
cutting plane. The relation between the cutting angle and the
2D section shape is well known when the cylinder basis is
circular [6]. Indeed, in this case, the cylinder section is an
ellipse the geometry of which brings information about the
cutting angle and the orientation of the cylinder axis [6, 9].

Things get worse when the cylinder basis is not circular
since, in the general case, it is difficult to predict the shape
of the cylinder section in 2D when it is cut at an arbitrary
orientation. As a consequence, it is almost impossible to de-
duce individual cylinder axis orientation except in some sim-
ple specific cases. In this paper, we argue that it is possible to
deduce the statistical distribution of cutting angles from the
distribution of the areas observed on an oblique section. This
can be done, whatever the shapes of the cylinder bases, if the
statistical distribution of basis areas is known.

In section 2, we describe the theoretical background of the
proposed approach. In section 3, it is validated by means of
experiments performed on theoretical distributions and syn-
thetic data. In section 4, we apply the procedure to the esti-
mation of fiber cutting angles in fibrous composites observed
in 2D. Finally, we give a few conclusions and prospects.
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Fig. 1. Cross and oblique sections of a circular and a gener-
alized cylinder. X and Y denote the area of the cross and the
oblique sections. Θ is the cutting angle.

2. THEORETICAL BACKGROUND

2.1. Definitions

Generalized cylinders refer to cylinders with arbitrary cross
section, i.e. with non trivial shapes such as circles, ellipses or
rectangles. We will call oblique section, the curve of inter-
section between the cylinder and an arbitrary cutting plane.
If the cutting angle is different from π/2 then the oblique
section is closed and its area is finite. Let C be a random
generalized cylinder, cut by an arbitrary plane. Let X and
Y be two real valued positive random variables that repre-
sent the areas of the cross and oblique sections of C. Let
Θ ∈ [0, π2 [ represent the cutting angle, as depicted in figure 1
and Z = cos Θ ∈]0, 1] its cosine. These variables are linked
by a simple geometric relation since Y = X

Z ,∀Z ∈]0, 1].
Let FX(x) = P (X < x) be the cumulative distribution

function of X and pX(x) = d
dxFX(x) its probability density

function. In the same way, let pY , pΘ, pZ , FY , FΘ and FZ be
the probability density functions and cumulative distribution
functions of Y , Θ and Z.

2.2. Relating probability density functions

Let us start from the expression of the cumulative:

FY (y) = P (Y < y) = P (
X

Z
< y) = P (X < yZ) (1)

Conditioning on Z, it follows:

FY (y) =

∫ 1

0

P (X < yz|Z = z)pZ(z)dz (2)

As one can reasonably assume that the cosine Z of the cut-
ting angle and the cross section area X are independent, the
previous expression becomes:

FY (y) =

∫ 1

0

P (X < yz)pZ(z)dz =

∫ 1

0

FX(yz)pZ(z)dz

(3)

Deriving FY , we get:

pY (y) =
d

dy
FY (y) =

∫ 1

0

∂

∂y
FX(yz)pZ(z)dz (4)

=

∫ 1

0

zF ′X(yz)pZ(z)dz =

∫ 1

0

zpX(yz)pZ(z)dz

Suppose that the densities of X and Y are known, then look-
ing for the density of the cutting angles is thus equivalent to
finding a solution f to the following differential equation:

pY (y) =

∫ 1

0

zpX(yz)f(z)dz, ∀y ∈ R+ (5)

with the double constraint f(z) ≥ 0 and
∫ 1

0
f(z)dz = 1.

2.3. Solving the differential equation

2.3.1. A constrained optimization problem

Equation 5 could be solved as a constrained optimization
problem over a function space. The solution could be looked
for as a real positive function f : [0, 1] → R+ with unit
integral, i.e. a probability density function. A possible op-
timization criterion Φ(f) to be minimized should measure
how much

∫ 1

0
zpX(yz)f(z)dz is in adequacy with pY (y),

supposedly known or estimated. Φ(f) could be any measure
of similarity between probability density functions.

However, this optimization problem is difficult to address
as it is hardly possible to choose a function space in which to
perform the optimization without any a priori about the distri-
butions of cutting angles. Besides, in practice, the distribution
of oblique section areas is not known analytically. However
it can be easily approximated by a discrete histogram.

2.3.2. Discretization of the density functions

Let hY = (hY,1, ..., hY,M )t be the discrete histogram of vari-
able Y , i.e. the discretization of pY into M intervals:

hY,k =

∫ yk+1

yk

pY (y)dy, ∀k ∈ {1, ...,M} (6)

where yk ≤ yk+1, y1 = 0 and yM+1 = ∞. The operator t

denotes the matrix transpose.
pZ can also be discretized into N classes, yielding vector

hZ = (hZ,1, ..., hZ,N )t:

hZ,l =

∫ zl+1

zl

pZ(z)dz, ∀l ∈ {1, ..., N} (7)

with zl ≤ zl+1, z1 = 0 and zN+1 = 1. Then, it comes:

hY,k =

∫ yk+1

yk

∫ 1

0

zpX(yz)pZ(z)dzdy

=

∫ yk+1

yk

[
N∑
l=1

∫ zl+1

zl

zpX(yz)pZ(z)dz

]
dy. (8)
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If the interval [zl, zl+1[ is small enough, pZ(z) can be consid-
ered to be constant over the interval, that is:

pZ(z) ≈ hZ,l/(zl+1 − zl), ∀z ∈ [zl, zl+1[. (9)

Rewriting equation 8, it appears that the discrete values hY,k
are linked linearly to the discrete values hZ,l:

hY,k ≈
N∑
l=1

hZ,lbk,l (10)

with bk,l = 1
zl+1−zl

∫ yk+1

yk

∫ zl+1

zl
zpX(yz)dzdy.

2.3.3. Least squares formulation

In practice, the discrete distribution of oblique section ar-
eas hY is unknown but is estimated from a statistical sample
(from an image). Let ĥY = (ĥY,1, ..., ĥY,M )t be its estimate.
Besides, if the distribution of cross section areas pX is known,
the coefficients bk,l can be calculated or numerically approx-
imated. Our optimization problem can thus be expressed as
the search of a distribution ĥZ = (ĥZ,1, ..., ĥZ,N )t so that:

ĥY,k ≈
N∑
l=1

ĥZ,lbk,l ∀k ∈ {1, ...,M}. (11)

When choosing the least squares criterion, the searched
distribution ĥZ = (ĥZ,1, ..., ĥZ,N )t is the solution of the con-
strained optimization problem:

ĥZ = arg min
r1,...,rN

M∑
k=1

(
ĥY,K −

N∑
l=1

rlbk,l

)2

(12)

with
∑N
l=1 rl = 1 and rl ≥ 0,∀l. In other words:

ĥZ = arg min
R∈[0,1]N

‖hY −BR‖2 (13)

with B =

 b1,1 ... b1,N
... bk,l

...
bM,1 ... bM,N

 and R =

 r1

...
rN

,

under the constraints
∑N
l=1 rl = 1 and rl ≥ 0,∀l.

This quadratic optimization problem with linear equality
and inequality constraints can be solved using standard algo-
rithmic solutions.

3. EXPERIMENTAL VALIDATION

3.1. Experimental design

The proposed approach has been validated at two levels.
Level 1 focuses on the validation of the optimization process,
trying to assess whether the simplification in equation 9 is
relevant or not and if parameters M and N have a critical

influence on the cutting angle distribution estimation. In or-
der to answer these questions regardless of image digitization
effects and area estimation errors, the experimental validation
is based upon numerical computation. Given pΘ the distri-
bution of the cutting angles and pX the distribution of the
cross section areas, we compute numerically pZ , pY , B and
the theoretical discrete distributions hthZ and hthY . B and hthY
are then fed into the optimization solver (see Eq. (13)) which
brings the estimate ĥthZ that can be compared with hthZ .

Level 2 has to deal with statistical sampling and image
synthesis. It aims at evaluating the effect of statistical sam-
pling and digitization. pX and pΘ are sampled L times. The
samples are used to produce synthetic 2D images that simu-
late the oblique section of a collection of generalized cylin-
ders. The produced binary images are labelled into various
objects the areas of which are split into classes yielding vec-
tor himgZ and himgY . himgY is fed into the optimization solver.
Its solution ĥimgZ is finally compared with hthZ . For simplic-
ity and without loss of generality, we have simulated circular
cylinders since 2D sections can be easily simulated by draw-
ing ellipses in an image i.e. without generating 3D data.

In our experiments, cross section areas are assumed to fol-
low a known normal distribution: X ∼ N (µX , σX). Though
arbitrary, this hypothesis proves to be relevant in practical
cases (see section 4) and allows to ease the computation of
matrix B. However, any other distribution can be considered
provided that an analytic form or a close approximation is
available. For the cutting angles, we considered a wrapped
normal distributionWN (µθ, σθ).

The proposed optimization process provides with the es-
timated discrete cosine distribution ĥZ which minimizes the
least squares criterion. We plotted a direct measure of the
adequacy between ĥZ and hZ using the error function:

E(hZ , ĥZ) =

N∑
n=1

|hZ,n − ĥZ,n|. (14)

Various values are tested for the histogram bin numbers M
(from 30 to 60) and N (from 1 to M ). The intervals for the
area and for the angle distributions are of equal width.

3.2. Results

Figure 2 illustrates the validation results obtained by feed-
ing the optimization algorithm with a discrete distribution
hthY computed numerically from a reference cross section
distribution and a reference cutting angle distribution. Input
cross sections follow a normal distribution N(548, 139). In-
put cutting angles Θ follow a wrapped normal distribution
WN (0.2, 0.3). N = 6 and M = 30 bins are used for cosines
and area distributions. The theoretical and estimated distri-
butions ĥthZ and hthZ are very similar. Only small differences
can be noticed regarding the two intervals Θ ∈ [0, π6 [ and
[π6 ,

π
3 [ (i.e. Z ∈] cos π3 , cos π6 ] and ] cos π6 , 1]). As well, the fit

between ĥthY = BĥthZ and hthY appears to be almost perfect.
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Fig. 2. Comparison of input (hthZ and hthY ) and output (ĥthZ
and ĥthY = BĥthZ ) distributions at validation level 1. In-
put cutting angles Θ follow a wrapped normal distribution
WN (0.2, 0.3). Input cross sections follow a normal distribu-
tion N(548, 139). Other parameters are N = 6 and M = 30.
Abscissa units for area distributions hthY and ĥthY are in pixels.

Fig. 3. Plot of the error function E(hZ , ĥZ) for various bin
number values N and M . Input cutting angles Θ follow a
wrapped normal distributionWN (0.2, 0.3). Input cross sec-
tions follow a normal distribution N(548, 139).

In figure 3, we plot the error E(hthZ , ĥ
th
Z ) as a function of

N , the number of bins of the angle and cosine histograms, and
M the number of bins in the oblique section area histograms.
While M has not a strong influence (except for large values
of N ), it is shown that the quality of the estimation depends
strongly on N . The best results are obtained with moderate
values for N , between 6 and 9. Though these curves relate
to a specific angle distributionWN (0.2, 0.3), similar results
have been obtained with other means and standard deviations.

The second validation stage is carried out using synthetic
images that simulate the section of 3D cylindrical structures.
The output angle distribution, not shown here, is very similar

in shape to the input theoretical distribution. Table 1 confirms
both the excellent match between the observed and the esti-
mated area distributions (i.e. himgy and ĥimgy = Bĥimgz ) and
the good fit between the input theoretical distribution and its
estimation (i.e. hthz and ĥimgz ).

µθ 0.1 0.1 0.2 0.2 0.3 0.3
σθ 0.1 0.3 0.1 0.3 0.1 0.3

E(hthZ , ĥ
img
Z ) 0.10 0.10 0.10 0.10 0.10 0.10

Table 1. Validation at level 2: Error values E(hthZ , ĥ
img
Z ) for

various angle distributions WN(µθ, σθ). Each value is the
mean of 100 samples of size 2196.

4. APPLICATION TO MICROSCOPY IMAGES OF
WOVEN COMPOSITE MATERIALS

The approach developed in this paper was applied to images
of fibrous composite structures. These structures are made of
threads containing around a thousand fibers. These threads
lie in three orthogonal directions that we will call X, Y and
Z. Threads in the Z direction are of great importance as re-
gards the composite robustness. Detecting and counting Z
fibers through microscopy imaging has thus become a rou-
tine operation for process monitoring. Material samples are
imaged more or less orthogonally to the Z fibers. Z fiber sec-
tions appear as compact patterns the shape of which depend
on the cutting angle but also on the initial morphology of the
fibers. Figure 4 shows two sections of such fibrous material.
In the first one, the fibers are almost perfectly orthogonal to
the image plane whereas, in the second one, they are cut with
arbitrary angles. The cross sections have clearly a non circu-
lar shape. Oblique sections appear to have even more com-
plex shapes. Although these shapes clearly depend on the
cutting angle and on individual fiber directions, no simple ge-
ometric relation has yet been established. Better than trying
to estimate individual cutting angles, we estimated the global
cutting angle distribution by applying our method.

As a prerequisite of the method is to know the distribu-
tion of fiber cross section areas, a set of images of orthogonal
views of fiber bundles were acquired using an optical micro-
scope. More than 2, 300 fiber sections were segmented and
analyzed to estimate the mean and standard deviation of the
distribution. The normality assumption appeared to be rele-
vant.

The inversion algorithm was applied to a set of images
comprising more than 30, 000 fibers. Fibers that were cut
longitudinally were removed a priori during the image seg-
mentation and classification process. The distribution of the
remaining fibers cutting angles i.e. the angular deviates of
fibers from the normal of the image plane is reported in fig-
ure 5. Z fibers are defined by material specialists as fibers
that are less than a given angle θmax apart from the normal

4
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Fig. 4. Micrographs of carbon fibers. Left: fibers are ob-
served orthogonally, the cross sections show specific bean
shapes. Right: individual fibers are cut at an arbitrary angle,
the oblique section are of varying non trivial shapes.

Fig. 5. Example of a cutting angle distribution obtained with
the proposed approach from the cross and oblique section dis-
tributions of an experimental set of images comprising a total
of more than 30, 000 fibers.

to the weaving plane. As the weaving plane corresponds ap-
proximately to the image plane, the Z fiber count is obtained
by summing the histogram bins related to angles smaller than
θmax, which is direct.

5. CONCLUSION

In this paper, we presented a novel method for the analysis
of the 3D spatial layout of generalized cylindrical structures
from a single section image. This method estimates the distri-
bution of the cutting angles i.e. the angles between the cylin-
der axis and the normal to the image plane. Contrary to exist-
ing approaches, the method is not tied to the shape of cylinder
bases and can be applied to structures of arbitrary shapes. The
only prerequisite is the knowledge of the cross section area
distribution. It hinges on the discretization of area and angle
distributions and on the minimization of a least square crite-
rion carried out with standard quadratic optimization solvers.

An experimental evaluation was conducted on synthetic
data which showed the capabilities of the approach. Finally,
the proposed algorithm was applied in an industrial context
to the estimation of cutting angles from images of 3D fibrous
structures. Once again, the capabilities of the approach were
evaluated.

In future works, a thorough study of the sensitivity of the

approach to deviations from the model will be carried out,
both on synthetic and experimental images. For instance, we
will study the sensitivity of the approach to deviations from
the normal distribution or to errors in the estimation of the
mean and variance .
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