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ABSTRACT 

 

This work presents a series of sparse signal modeling algo-

rithms implemented in a variable rate CELP coder in order to 

compare their performances at a reasonable computational 

load. Multipulse excitation (MPE), Multi-Pulse Maximum 

Likelihood Quantization (MP-MLQ), Algebraic CELP 

(ACELP) and hybrid excitation schemes are analyzed under 

a common framework. New approaches are proposed, based 

on cyclic and parallel use of fast greedy algorithms. These 

algorithms yield a statistically significant reduction of signal 

approximation error at a controllable computational com-

plexity. Main results were confirmed by comparing MOS 

values obtained with the PESQ algorithm 

 

Index Terms— speech coding, CELP, scalable coding, sparse 

approximation, MP-MLQ, ACELP 

 

1. INTRODUCTION 

 

Most of speech coding standards appeared in the 90’s of the 

last century (e.g. [1]) but nowadays, thanks to a rapid devel-

opment of digital signal processors and programmable devic-

es, more complex sparse approximation and compressive 

sensing techniques may be applied to the multipulse or sto-

chastic excitation CELP coders [2], [3]. 

In the MP-MLQ and ACELP coders the exhaustive 

codebook search algorithm is not feasible in most cases, so 

the suboptimal algorithms, like the focused search [1], depth 

first [5], pre-selection [6], maximum take precedence [7], 

local, global and iteration free replacement [8], [9], [10], [11] 

were used. In the recent years new multi-layer excitation 

schemes for the CELP coder were proposed [12], combining 

the MPE approach and the ACELP approach.  

The aim of this paper is to compare some of the code-

book search algorithms and to propose new ones which may 

be implemented in a variable rate CELP coder. The CELP 

coder used for testing is the G.723.1 coder [1], [4] with the 

algebraic code excited linear prediction algorithm replaced 

by a series of sparse signal modeling algorithms. The criteria 

used in our comparison are the signal modeling accuracy and 

scalability (better signal quality for an increased number of 

codebook vectors being used for signal modeling). 

It should be stressed, that our aim is not a construction of 

a new variable rate speech coder, competing with the ITU-T 

standards, like G.718 [13]. Our primary interest is in compar-

ing the excitation schemes and codebook search algorithms. 

So we do not implement any bandwidth extension algorithm, 

we keep the narrowband speech whatever the bit rate.  

This paper is organized as follows: In Sect.2 the basic 

excitation schemes of the CELP coder are described. In 

Sect.3 the codebook search algorithms for MP-MLQ and 

ACELP coders are compared. New algorithms based on M-

best search and pulse replacement are proposed. In Sect.4 

new hybrid CELP excitation schemes are tested. In Sect.5 the 

simulation results are briefly summed up. 

 

2. SIGNAL MODELING IN CELP CODERS 

 

The CELP coder may be regarded as a special sparse approx-

imation algorithm (Fig.1). Spectral weighting of quantization 

noise is attained by using the de-emphasis filter (here 

)(/)/( zAzA  ), which models the masking threshold. The 

N-dimensional vectors of the perceptual speech signal tx  are 

modeled using the filtered vectors issued from two code-

books (the adaptive one and the constant one). Due to a small 

number of vectors being selected from both dictionaries, this 

is a kind of sparse approximation. It must be stressed, that the 

criterion used in this modeling is Euclidean: vectors are se-

lected and a synthetic perceptual signal *
tx  is built so as to 

minimize the squared Euclidean norm 2*2 | || || || | tt xxe  . At 

successive stages of modeling the spectral flatness of the 

error signal e  increases and the quantization noise accompa-

nying the output speech signal *
sx  attains its proper spectral 

shape.  

 

Fig.1. Simplified scheme of the CELP coder/decoder: pre-emphasis 

and de-emphasis filtering used for spectral weighting (above) and 

perceptual speech signal coding (below) 
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A vector of synthetic perceptual signal equals: 

pctt xxxHxx  00
*    (1) 

where: t  - excitation signal, 0x - zero input response of the 

predictive filter H(z)=1/A(z/), H - the lower triangular NxN 

Toeplitz matrix built on the impulse response of H(z), 

cc Hx   - the signal issued from the constant codebook and 

pp Hx   - the signal issued from the adaptive codebook 

(long term prediction). Assuming that the long term prediction 

signal is known (in this paper we do not optimize this stage of 

signal modeling), the error energy equals:  
2*2

0
2*2 | || || || || || || || | xxHHxxxxe cpttt   (2) 

where pt xxxx  0  - the target signal and 

cc Hxx *  - its model.  

Having the codebook ],,,[ 21 LcccC  , consisting of 

L N-dimensional vectors (in most cases single pulses, i.e. C=I 

is the unit matrix), the excitation signal c  may be obtained 

using the following approaches (excitation schemes):  

a) multi-gain scheme, used in the Multipulse Excitation 

(MPE) coders [2]:  

NKcg
K

i

ij
ic 



,
1

)(     (3) 

This multi-gain excitation scheme leads to the “classical” 

sparse modeling techniques. Indeed, the sparse approximation  





K

i

ij
i

K

i

ij
ic fgcHgHx

1

)(

1

)(*         (4) 

is searched, minimizing the error (2). The vectors 
)()2()1( ,,, Kjjj fff   are searched in the filtered codebook 

],,,[ 21 LfffCHF  .  

b) one-gain scheme, applied e.g. in GSM-EFR, GSM-AMR, 

G.729, G.723.1 coders:  





K

i

ij
ic csg

1

)(         (5) 

Here, the pulses have only two amplitudes (signs 1is ) 

and one common gain g. There are two variants of this 

scheme. In the MP-MLQ (Multi-Pulse - Maximum Likeli-

hood Quantizer) there are no restrictions or small restrictions 

concerning positions of the selected vectors (pulses), e.g. in 

the G.723.1 coder operating at bit rate 6.3 kbit/s either even 

or odd positions may be taken [1]. In the ACELP (Algebraic 

CELP) coders pulses are distributed in tracks and have usual-

ly 8-16 possible positions. Such excitation is used e.g. in the 

G.723.1 coder operating at 5.3 kbit/s [1].  

c) hybrid scheme, used in the G.718 coder [12], [13]: 





lK

lKi

ij
i

L

l
lc csg

'

1)1('

)(
'

1

        (6) 

Here, there are L’ layers in which K’ pulses are distributed as 

in (5). In each layer, however, a separate gain ( lg ) is used.  

The multi-gain excitation scheme (3) is analyzed in [3] 

and [16]: several sparse approximation algorithms are com-

pared, attention is focused on the Optimized Orthogonal 

Matching Pursuit (OOMP) algorithm [2], [14], [15], particu-

larly on its fast implementation, which has been proposed 

under the name of Recursive Modified Gram-Schmidt 

(RMGS) algorithm [15],[16]. In this paper we analyze the 

one-gain excitation scheme (5) and the hybrid scheme (6), in 

which we also use the OOMP algorithm.  

 

3. CODEBOOK SEARCH IN MP-MLQ AND ACELP 

 

Having the target vector pt Hxxx  0  its best approxi-

mation (model cHx * ) is searched, which minimizes the 

Euclidean norm | || | *xx   and is described with (5). Testing 

of all possible combinations of pulse positions and signs is not 

feasible, so many suboptimal algorithms are proposed:  

Gain first – Looking for positions and signs for a preselected 

gain. In the G.723.1 - 6.3kbit/s coder four gains are tested and 

a simple greedy algorithm is used for positions calculation 

[1], [4]. The criterion is the Euclidean norm.  

Focused search – Pulses are allocated in K nested loops, but 

the inner loops are entered only if the approximation error 
2* | || | xx   is below the predefined threshold (G.729, G.723.1 

at 5.3 kbit/s). 

Depth first tree search [5] – The inner loops are entered but 

the outer loops are selected according to the approximation 

error.  

Pre-selection [6] and maximum take precedence [7] – Pre-

selection of pulse positions, according to the long-term pre-

diction signal p  and back filtering of the target signal x . 

Local replacement [8] – Iterative replacement of least signifi-

cant pulses (having a small influence on the approximation 

error) with more significant ones.  

Global replacement [9], [10] – As above, but replacement is 

performed for any pulse. It is reported, that this methods 

yields, at lower computational load, comparable results to the 

focused search and depth first approaches [9], [10], [18]. In 

the first stage of this algorithm the initial positions and signs 

of K pulses are calculated. They may be obtained from the 

long-term prediction residual signal or may be found by a 

back filtering of the target vector x  (a combination of both 

signals is usually used). In the second stage each pulse, one 

by one, is replaced to its better position. The criterion is max-

imum norm of the orthogonal projection of x  on cH  or 

minimum angle between x  and cH  (both are equivalent). 

This procedure is repeated in a cyclic manner. If in K trials 

there is no effective replacement (each pulse stays at its previ-

ous position) then the algorithm is stopped. In our implemen-

tation of the global replacement algorithm the following mod-

ification is proposed: the initial pulse positions and signs are 

calculated using the minimum angle algorithm. 
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Iteration free replacement [11] – Pulse replacement without 

calculation of the approximation error at each iteration.  

Minimum angle [17] - It is a simple greedy algorithm, allo-

cating K pulses in K steps by minimizing the angle between 

the target vector pt Hxxx  0  and its model:  





K

i

ij
i

K

i

ij
i

K

i

ij
ic fsgcHsgcsgHHx

1

)(

1

)(

1

)(*  (7) 

where )()( ijij cHf   - the filtered pulse allocated at position 

j(i), i.e. the impulse response of H(z) shifted to j(i).  

The target signal is modeled by adding and subtracting of 

the vectors )(ijf . Having a sum of K vectors a proper gain 

may be obtained by the orthogonal projection of the target 

vector x  on this sum.  

M-best implementation of a greedy algorithm - The M-best 

implementation calculates, in a parallel way, M sequences of 

pulses. At the first step the codebook vectors are sorted in 

ascending order according to the angle with the target vector. 

The first M vectors start M sequences. At the second step 

(generally, at the k
th
 step) there are almost ML possible se-

quences (to any of M sequences any of L-k+1 vectors may be 

appended), but only M of them are retained. The criterion is, 

of course, the angle between the target vector and its models. 

The identical sequences (permutations of the same vector 

indices) are not allowed. They are easily recognized because 

they form the same angle with the target vector. At the last 

step the best sequence is selected. The angle minimization 

algorithm is so simple, that even M=10 parallel runs yield no 

computational complexity problems.  

Hybrid algorithm - In the first stage the initial pulse positions 

and signs are calculated using the M-best implementation of 

the minimum angle algorithm. In the second stage the global 

pulse replacement is performed, as described above. 

We have tested some of these codebook search algo-

rithms in the MP-MLQ and ACELP coders, both based on the 

G.723.1 coder structure [4]. The long and short time predic-

tors, perceptual filters, frame and subframe (N=60) lengths are 

left unchanged. The postfilters are suppressed, because they 

affect the MOS values obtained with the PESQ algorithm. 

The codebook C consists of L=60 pulses of unit amplitude, 

i.e. the matrix C is a unit matrix. Scaling is obtained by 

changing the number of pulses K. In our scalable MP-MLQ 

coder there is only one grid containing all N=60 positions 

(two grids containing even and odd positions are suppressed). 

The number of pulses varies from K=4 to K=36. In our scala-

ble ACELP coder four tracks are used, each one contains 15 

positions. In each track the same number of pulses is allocat-

ed, from 1 to 9, according to the chosen bit rate. This ap-

proach differs from the G.723.1 coder, in which there are 4 

tracks having unequal number of positions.  

Two criteria are used for comparing the codebook search 

algorithms. The first one is the segmental SNR measured at 

the perceptual signal level (note that the sparse approximation 

algorithm uses the Euclidean norm | || | *
tt xx   so it is reason-

able to use SNR for perceptual signal). At the speech signal 

level using of the SNR may be questioned, so we compare the 

MOS values obtained using the PESQ algorithm.  

 
Fig.2. The segmental perceptual SNR [dB] for the minimum angle 

algorithm (4 phrases, 2 feminine and 2 masculine speakers) 

For each tested algorithm, the segmental perceptual SNR 

values are evaluated and compared with the segmental per-

ceptual SNR of the reference algorithm (i.e. the minimum 

angle – Fig.2): ][dBSNRSNRSNR min.angle
segseg  . Results 

for the MP-MLQ and the ACELP coder are shown in Fig.3. 

The confidence interval for SNR  values is about 04.0  dB.  

 

 

Fig.3. ][dBSNR  for the MP-MLQ coder (above) and the ACELP 

coder (below): Gf4 – Gain first with 4 gain candidates, repl – global 

replacement, repl+minangle - global replacement starting with min-

imum angle, Mbest – M-best minimum angle with 10 parallel se-

quences, Mbest+repl – hybrid algorithm 
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For both coders gain first algorithm performs no better 

than the reference algorithm, despite of its greater complexity. 

The global replacement algorithms perform better than the 

reference algorithm. The M-best implementation of the mini-

mum angle algorithm is better than the global replacement. It 

is to be noted, that the M-best algorithm has a controllable 

computational cost (M times the cost of the minimum angle 

algorithm), whereas the number of iterations of the global 

replacement algorithm is variable. The hybrid approach out-

performs the other codebook search algorithms. It has been 

juxtaposed with the minimum angle algorithm using K=12 

vectors by comparing MOS values obtained with the PESQ 

algorithm [19]. According to the Wilcoxon signed rank test 

[20] for 10 speech phrases the mean MOS value for the hy-

brid codebook search algorithm is greater than the mean MOS 

value for the minimum angle algorithm. This result is signifi-

cant at the 0.005 level for both the MP-MLQ and ACELP 

coders.   

 

4. HYBRID EXCITATION SCHEMES 

4.1. Using multiple gains  

As the number of pulses (K) grows, there is a saturation of the 

SNR for MP-MLQ/ACELP coders (Fig.2) which is not ob-

served for the MPE coders using the OOMP algorithm [3]. 

This saturation is due to single gain used in the excitation 

model (5) – not due to the codebook search algorithms (more 

complex codebook search algorithms yield only a slight im-

provement of perceptual SNR - Fig.3).  

During the simulations of the MPE - OOMP coder it has 

been observed that the absolute value of gains diminish at 

subsequent iterations. This rule may be applied to the MP-

MLQ model: the norms of vectors selected at subsequent iter-

ations may be reduced: 





K

i

ij
iic csg

1

)(       (8) 

where 1 ii   are the multiplicative factors which are con-

stant and are not transmitted. The values of these factors are 

set up experimentally, by the observations of gains applied in 

the MPE coder (Fig.4).  

 

Fig.4 Gain reduction factors  

Codebook search is performed by using a modified min-

imum angle approach. Note that the modified model (8) de-

mands greater bit rate than the MP-MLQ model (5). This is 

due to transmission of the permutation of K vectors: in order 

to reconstruct the excitation signal we should know which 

vectors correspond to particular gains. 

In Fig.5 the perceptual segmental SNR of the tested cod-

ers is drawn as a function of the bit rate. Bit rates used for 

LPC coefficients (0.8 kbit/s) and long term predictor lags (0.6 

kbit/s) are the same as in the G.723.1 coder. The adaptive and 

nonadaptive codebook gains are coded in 7 bits each, yielding 

1.86 kbit/s. In our implementation, the filtered codebook F is 

orthogonalized with respect to the filtered excitation issued 

from the adaptive codebook pp Hx   [15], [18].  

The improvement of perceptual SNR obtained due to the 

variable gain excitation (8) is not sufficient to compensate for 

the increase of a bit rate – compare the MLQvg1 with MP-

MLQ and ACELP in Fig.5. In order to reduce bit rate without 

affecting much signal quality, the multiplicative factors are 

kept constant for a group of 'K  vectors.  



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l
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1

        (9) 

Thus the permutations of vectors within each group do not 

reckon. This modification (label “MLQvg4” in Fig 5) yields a 

good modeling accuracy, comparable to MP-MLQ at lower 

bit rates and a good scalability, offering improvement of accu-

racy at higher bit rates. Indeed, when using K=4 vectors for 

signal modeling, both coders are identical. However, for K=32 

the MLQvg4 coder outperforms the MP-MLQ coder in terms 

of perceptual SNR and MOS measured with the PESQ algo-

rithm. According to the Wilcoxon signed rank test (signifi-

cance level 0.005) for 10 speech phrases the mean MOS value 

for the MLQvg4 coder is greater than the mean MOS value 

for the MP-MLQ coder. Of course the bitrates are not the 

same, but note, that the MP-MLQ coder, due to the saturation 

effect, has no chance, even for large K, to attain MOS values 

easily accessible for coders using the modified excitation (9). 

 

Fig.5 The segmental perceptual SNR [dB] as a function of bit rate for 

the tested CELP models and search algorithms (markers indicate 

number of vectors K=4,8,12,16,20,24,28,32,36) 
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4.2. Combining the MPE and MP-MLQ schemes  

In our MPE-OOMP coders gains are quantized as follows: 

firstly the gain of a maximum absolute value is quantized at 7 

bits. All the gains are divided by this reference value and their 

absolute values are quantized at b=3 or 4 bits.  

The accuracy of the MPE-OOMP is worse than that of 

the MP-MLQ and ACELP at low bit rates. Compare the 

MPE-OOMP coder using K=4 vectors and b=3 bits per gain 

(OOMP-3bit in Fig. 5) and ACELP-minangle coder using 

K=8 vectors. Both coders have the same bit rate (almost 8 

kbit/s), but the difference of perceptual SNR is 0.88 0.04 

dB. According to the Wilcoxon signed rank test (significance 

level 0.005) the mean MOS value for the ACELP-minangle 

algorithm is greater than the mean MOS value for the OOMP-

3bit algorithm. However, at high bit rates the MPE- OOMP 

coders outperform the other ones.  

In order to reduce the number of quantized gains without 

affecting much the signal quality a hybrid excitation model 

(6) may be used. Similar models have been proposed in [12] 

and applied in G.718 coder [13]. Here, only L’ gains are quan-

tized for ''LKK   vectors used for signal modeling. In our 

implementation the codebook search algorithm uses L’-stage 

OOMP in the outer loop and the K’ – stage minimum angle 

approach in the inner loop. The target signal model is ob-

tained as a combination of vectors issued from the 

orthogonalized codebooks: 


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The results for N=60, K’=12, b=3 bits and K=4,8,...,36 

(Fig.5 – label “MLQvg12+OOMP3bit”) show that this tech-

nique yields high perceptual SNR and good scalability.  

 

5. CONCLUSIONS 

 

Several codebook search algorithms used for the MP-MLQ 

and ACELP coders are tested and compared. The result is 

somewhat astonishing: a very simple greedy algorithm, 

namely the minimum angle approach [17], yields quite good 

modeling accuracy. More complex algorithms yield some 

improvement of the SNR at a perceptual signal level, but this 

improvement does not exceed much 1 dB. Nevertheless, this 

is a statistically significant improvement. It may be obtained 

using a hybrid codebook search algorithm, based on the M-

best implementation of the minimum angle algorithm and the 

global replacement algorithm. The main disadvantage of the 

MP-MLQ and ACELP excitation models is a poor scalability: 

SNR saturates as the number of chosen vectors (pulses) in-

creases.  

In order to improve the scalability without increasing 

much the bit rate some hybrid excitation schemes are ana-

lyzed. The saturation of the SNR disappears if gains diminish 

in subsequent iterations of the minimum angle algorithm. The 

other solution of the SNR saturation problem is a combined 

OOMP and minimum angle approach, used for calculation of 

a hybrid (MPE and MP-MLQ) excitation model. New CELP 

excitation models and codebook search algorithms may serve 

to construct a simple scalable CELP based on the G.723.1 

standard. 
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