
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

SOLVING THE HYPERSPECTRAL UNMIXING PROBLEM WITH PROJECTION ONTO
CONVEX SETS

Rob Heylen, Muhammad Awais Akhter, Paul Scheunders

IMinds-Visionlab, University of Antwerp
Universiteitsplein 1

2610 Wilrijk, Belgium

ABSTRACT

An important problem in hyperspectral unmixing is solving
the inversion problem, which determines the abundances of
each endmember in each pixel, taking the constraints on these
abundances into account. In this paper, we present a new ge-
ometrical method for solving this inversion problem, based
on the equivalence with the simplex projection problem, and
projection onto convex sets. By writing the simplex as an
intersection of a plane and convex halfspaces, an alternating
projection algorithm is constructed based on the Dykstra al-
gorithm. We show that the resulting algorithm can be used to
successfully solve the spectral unmixing problem, and yields
results that are comparable to those obtained with state-of-
the-art methods. The runtime required is very competitive,
and the very simple nature of the algorithm allows for highly
efficient implementations.

1. INTRODUCTION

In linear hyperspectral unmixing, one aims to decompose
each pixel in a hyperspectral image into an optimal linear
combination of so-called endmembers, with abundance co-
efficients that are positive and sum to one. The underlying
thought is that the spectrum captured in each pixel consists
of only a small number of pure contributions, represented by
the endmember spectra. Many approaches exist to solve this
linear mixing model (LMM), with a wide variety of assump-
tions. A comprehensive, recent, and very extensive overview
of the hyperspectral unmixing literature can be found in [1].

In spectral unmixing, one typically needs to solve three
problems: estimation of the required number of endmem-
bers, extraction of these endmembers, and determination of
the abundances of each endmember in each pixel. Most un-
mixing methodologies use a sequential approach, requiring
separate algorithms for each step in the unmixing process. In
this paper, we are mainly interested in the final step, the in-
version or unmixing problem. This problem is traditionally
solved by using the fully-constrained least-squares unmixing
(FCLSU) algorithm [2], which generates the abundances for
each pixel once the endmembers are known, while respecting

the constraints on these abundances. While several other tech-
niques exist (see e.g. [3] and references therein), FCLSU is
still the most widely used algorithm for solving the inversion
problem.

Some drawbacks of these unmixing algorithms are that
they can be very computationally intensive, they can show bad
scaling behavior for increasing numbers of endmembers, or
they can be cumbersome to implement. Especially the latter
drawback starts playing an important role if one is moving to-
wards real-time or onboard unmixing applications, where the
computational platform and available power can be severely
restricted. Hence, there exists a lot of interest in unmixing
algorithms that are computationally efficient, yield correct re-
sults, and are easy to implement in dedicated hardware.

In this paper, we present a method for solving the unmix-
ing problem, based on the Dykstra algorithm [4] for projec-
tion onto convex sets (POCS) [5]. First, we demonstrate the
equivalence between the spectral unmixing problem and the
problem of projecting a point onto a simplex. Next, we show
how this simplex can be constructed as the intersection of sev-
eral simple convex sets, such as planes and halfspaces. We
then use the well-known Dykstra algorithm to find the pro-
jection of a point onto this intersection, by a sequence of al-
ternating projections that converges towards the correct solu-
tion. The resulting algorithm is very easy to implement, its
iteration loop requires only matrix and vector multiplications,
and the complexity of the algorithm scales linearly both in the
number of endmembers as in the size of the data set, making
it an ideal candidate for onboard or hardware implementa-
tions. Furthermore, while faster algorithms exist, the runtime
is competitive, and can be trivially accelerated by parallel im-
plementations.

The outline of the paper is the following: In section 2
we show how the Dykstra alternating projection algorithm
can be used for solving the unmixing problem. Next, we
formally present the alternating projections unmixing (APU)
algorithm, and discuss its properties. In section 3 we exe-
cute the APU algorithm on the AVIRIS Cuprite data set, and
compare the obtained results and runtimes with the FCLSU
and the simplex projection unmixing (SPU) algorithm [3], re-

EUSIPCO 2013 1569716195

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

cently proposed by the same authors of the current paper. Sec-
tion 4 contains the conclusions and future work.

2. THE APU ALGORITHM

Suppose we have a hyperspectral data set in a d-dimensional
spectral space Rd

+. The linear mixing model states that any
pixel x can be constructed as a convex combination of p end-
members from the set E = {ei}i=1,...,p, and additional noise
η:

x =

p∑
i=1

aiei + η, ∀i : ai ≥ 0,

p∑
i=1

ai = 1 (1)

One typically imposes two constraints on the abundances a =
(a1, . . . , ap), positivity, since no endmember can have a nega-
tive contribution to the observed spectrum x, and they have to
sum to one, indicating that x can be completely decomposed
into endmember contributions. In the absence of noise η = ~0,
the allowed pixel values will lie in a simplex S(E) spanned
by the endmembers in E:

y ∈ S(E)⇐⇒ ∃{ai}i=1,...,p :


y =

∑
i aiei

∀i : ai ≥ 0∑
i ai = 1

(2)

The abundances play the role of barycentric coordinates in a
convex set, and can be easily obtained from y by inversion of
the over-determined linear system of equations y =

∑
i aiei.

The inversion problem tries to find an optimal solution for
the abundance vector a in (1), if x and the endmember set E
is known. Since the noise vector η is unknown, but usually
assumed to be made up of independent and identically dis-
tributed random variables, the optimal solution is tradition-
ally taken as the one that minimizes the reconstruction error,
defined as the Euclidean distance between the data point x
and the reconstruction y =

∑
i aiei. Within this description,

solving the inversion problem can be restated as a projection
operation: The point inside the simplex S(E) closest to x is
the reconstructed point y corresponding to the solution of the
inversion problem. By introducing a projection operator

PJ(x) = y ∈ J ⇐⇒ ∀z ∈ J : ‖z − x‖2 ≥ ‖y − x‖2 (3)

the inversion problem becomes equivalent to solving the pro-
jection operation PS(E).

Any simplex S(E) ∈ Rd can be written as the intersec-
tion of a (p − 1)-dimensional plane T (E) and p half-spaces
Hi(E). The plane T (E) is the (p − 1)-dimensional simplex
plane

x ∈ T (E)⇐⇒ ∃{bi}i=1,...,p :

{
x =

∑
i biei∑

i bi = 1
(4)

To define the half-spaces Hi(E), we note Ei = E/{ei} =
{e1, . . . , ei−1, ei+1, . . . , ep}, and introduce the operation

PT (Ei)(x), which returns the point on the plane through Ei

closest to x. This is nothing more than the orthogonal projec-
tion of x onto T (Ei). With ci = PT (Ei)(ei), we can define
the half-space Hi(E) as

x ∈ Hi(E)⇐⇒ (x− ci) · (ei − ci) ≥ 0 (5)

and the simplex can be constructed as

S(E) = T (E) ∩H1(E) ∩ . . . ∩Hp(E) (6)

The simplex projection problem can now be restated as
finding the closest point inside the intersection of p+1 convex
sets. A well-known algorithm for this problem that converges
towards the correct solution is the Dykstra algorithm [4, 6].
This algorithm allows one to find the closest-point projection
onto the intersection of a number of sets, using some simple
vector operations and a sequence of projections onto the in-
dividual sets. Because projection onto a plane is trivial, and
projection onto a halfspace is very simple (project onto the
plane of the halfspace if (5) is violated, and do nothing other-
wise), this Dykstra algorithm can be used to solve the simplex
projection problem. Adapting the Dykstra algorithm for the
specific problem at hand leads to the alternating projections
unmixing algorithm, which we present here in its algorithmic
form. The algorithm has only one parameter, the number of
iterations M . An illustration of the convergence of the APU
algorithm in two dimensions is provided in Fig. 1.

Algorithm 1: The APU algorithm

for i = 1, . . . , p do
vi = ~0;
ci = PT (Ei)(ei);

x = PT (E)(x);
for iterations = 1, . . . ,M do

for i = 1, . . . , p do
y = x− vi;
if (y − ci) · (ei − ci) < 0 then

x = PT (Ei)(y);

else
x = y

vi = x− y;

The main advantage of this algorithm is its computational
simplicity. Projection onto a plane spanned by a set of points
can be easily done via matrix addition and multiplication op-
erations with the pseudo-inverse of the endmember matrices.
With I = (e1, . . . , ep) and J = (e2 − e1, . . . , ep − e1) , we
can write

PT (I)(x) = J(JTJ)−1JT (x− e1) + e1 (7)

To obtain the abundances a from the projected pointx, we
can use the pseudo-inverse to solve the overdetermined linear

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

Fig. 1: The evolution of the x variables in the APU algorithm
towards their final result on the simplex in red, for several
points outside this simplex. Points inside the simplex are not
modified by the algorithm. The evolution is indicated with a
full line, and the starting and final points indicated with cir-
cles.

system x =
∑

i aiei for a. An additional vector dot product
is required for checking property (5). All the required projec-
tion matrices can be calculated beforehand, stored in memory,
and used in the main loop of the algorithm, which contains
only linear matrix and vector operations. This main loop can
be executed for every pixel of the hyperspectral image using
the same projection matrices, making high-performance com-
puting and single-instruction multiple-data implementations
very simple to implement.

The computational complexity of the main iteration loop
of the APU algorithm can be easily determined. There are
M × p iterations, which involve a vector dot product (O(d)
operations) and a possible projection onto a hyperplane
(O(d2) operations). Assuming that d � 1, the worst-case
complexity is hence of order O(Mpd2) operations per pixel,
with M the number of iterations, p the number of endmem-
bers, and d the dimensionality of the data set. The runtime of
the APU algorithm is thus linear in the number of pixels to be
unmixed, the number of endmembers used, and the number
of iterations performed in the main loop.

3. TESTING ON REAL HYPERSPECTRAL DATA
SETS

3.1. Setup of the experiments

In this section, we assess the performance of the APU algo-
rithm when used to unmix the AVIRIS Cuprite data set, ob-
tained over the Cuprite mining region in Nevada, USA (see
e.g. [7] for a detailed description of this data set). This is a
301× 365 image, of which we have used 51 spectral bands in

the IR range (1.98-2.48 µm). This data set is depicted in Fig.
2 as an approximated true-color image.

We evaluate the performance of the APU algorithm with
respect to two other spectral unmixing algorithms, the well-
known FCLSU algorithm [2] as implemented in Matlab by its
author with default settings, and the simplex-projection un-
mixing (SPU) algorithm as implemented in [3]. Both of these
algorithms have some drawbacks: The FCLSU algorithm is
based on the Lawson-Hanson non-negative least-squares al-
gorithm, which is an iterative algorithm as well. As such, it is
possible that the FCLSU algorithm terminates too soon, and
hence has not yet fully converged towards the true solution.
Furthermore, this algorithm is relatively slow. The SPU al-
gorithm on the other hand is a recursive algorithm based on
geometrical principles, and is very fast for lower numbers of
endmembers p. Due to the recursive nature however, it scales
badly as p increases, and for higher values of p, the runtime
becomes very large. Furthermore, the SPU algorithm is based
on a slightly flawed geometrical assumption, causing it to re-
turn wrong results for a small fraction of pixels (of order 0.3%
of all pixels in real hyperspectral data sets). All algorithms are
implemented and run in Matlab, and we did not employ any
parallelization to allow for a fair comparison.

3.2. Abundance maps

A typical and well-known abundance map for the Cuprite data
set is the map associated with the alunite endmember. We
have plotted this map in Fig. 2, for the FCLSU algorithm and
the APU algorithm, executed with M = 10 and M = 100
iterations. These results show that the APU algorithm will re-
turn qualitatively similar results to the FCLSU algorithm for
10 iterations, although there are still some slight differences
visible. For 100 iterations, the two abundance maps are indis-
cernible. We did not plot the SPU abundance map since it is
virtually identical to the FCLSU map.

3.3. Convergence of the APU algorithm

To assess the abundance vectors returned by the APU algo-
rithm, we performed the following experiment: We ran the
FCLSU and SPU algorithms on the Cuprite data set for p =
10 endmembers, yielding two reference sets of abundance
vectors: {aFC

1 , . . . ,aFC
N } and {aSP

1 , . . . ,a
SP
N }. Next, we ran

the APU algorithm, and after each iteration, compared the
p×N absolute differences between the obtained abundances,
and the two reference sets. The mean, median and maximum
of these absolute abundance differences are given in Fig. 3.

As can be seen in this figure, the mean abundance error
drops below 0.01 after 10 iterations of the APU algorithm,
and the median is much lower. The maximum difference stays
relatively large however. These results indicate that the ma-
jority of pixels will quickly converge towards their final solu-
tions, but a small portion will require a higher number of iter-
ations to converge. The maximal errors for the SPU method

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

(a) Cuprite data set (b) FCLSU

(c) APU M = 10 (d) APU M = 100

Fig. 2: The Cuprite data set, and the abundance maps of the
alunite endmember obtained by the FCLSU algorithm, and
the APU algorithm with M = 10 and M = 100 iterations.
The total number of endmembers was p = 10.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

iteration

a
b

s
.

d
if
fe

re
n

c
e

mean

median

max

Fig. 3: The mean, median and maximum of the absolute dif-
ferences between the abundances obtained by the APU algo-
rithm, and the FCLSU (lines) and SPU (pluses) algorithms.

5 10 15 20 25 30

10
0

10
1

10
2

10
3

p

ru
n
ti
m

e
 (

s
)

FCLSU

SPU

APU

Fig. 4: The runtime in seconds as a function of the number of
endmembers p for the Cuprite data set, with d = 51 bands.

stay one, caused by an erroneous result returned by the SPU
algorithm. Since abundance differences of order 0.01 can be
neglected in practical unmixing applications, we can fix the
number of iterations M = 10 for our further experiments.

3.4. Runtime of the APU algorithm

The runtime dependence of the studied algorithms on the
number of endmembers p used for unmixing the Cuprite
data set is plotted in Fig. 4, where we have used M = 10
iterations for the APU algorithm. For each value of p, the
endmembers were extracted by the NfindR algorithm [8].
The APU algorithm is substantially faster than the FCLSU
algorithm, and does not show the strong p-dependence of the
SPU algorithm. Especially for higher values of p, the APU
algorithm outperforms the two other alternatives.

In Fig. 5, the dependence of the runtime on the dimen-
sionality d is shown for p = 10 endmembers. Data sets with
lower dimensionality were created by taking the first d bands
of the hyperspectral image. The runtime of the SPU algorithm
is mostly independent on d, while both the FCLSU and APU
algorithms require more time for increasing dimensionality.

4. CONCLUSIONS

Solving the spectral unmixing problem can be considered
equivalent to finding the closest-point projection of a point
onto the endmember simplex. Because the simplex can be
written as an intersection of convex sets, such as halfspaces
and hyperplanes, any algorithm that can project onto the in-
tersection of convex sets can be used as well to solve the
unmixing problem. By adapting the Dykstra algorithm for
projection onto convex sets to the problem at hand, we ob-
tain a very simple unmixing algorithm, based on alternating
projections onto the individual convex sets: the alternat-

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
60
61

10 20 30 40 50
0

50

100

150

200

d

ru
n
ti
m

e
 (

s
)

FCLSU

SPU

APU

Fig. 5: The runtime in seconds as a function of the spectral
dimension d for the Cuprite data set, for p = 10 endmembers.

ing projection unmixing algorithm. We compare the results
and the runtime of this APU algorithm with the well-known
FCLSU algorithm, and the recently introduced SPU algo-
rithm. The results demonstrate that solving the unmixing
problem with alternating projection methods can be a viable
alternative to currently used methods for unmixing, since the
runtime required is competitive, and the returned abundances
are comparable to those obtained with other methods. Fur-
thermore, due to the very simple nature of the algorithm, the
APU algorithm can be easily implemented on parallel or high-
performance computing systems, which allows for a massive
increase in speed. This property makes the APU algorithm a
perfect candidate for future onboard unmixing implementa-
tions. Future work includes the addition of a validation phase
to check whether convergence has been reached, and further
comparisons with other spectral unmixing methods.

5. REFERENCES

[1] J. M. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Par-
ente, Q. Du, P. Gader, and J. Chanussot, “Hyperspectral
unmixing overview: Geometrical, statistical, and sparse
regression-based approaches,” IEEE J. Sel. Top. Applied
Earth Observations and Remote Sensing, vol. 5, no. 2, pp.
354–379, 2012.

[2] D.C. Heinz and C.-I Chang, “Fully constrained least
squares linear spectral mixture analysis method for mate-
rial quantification in hyperspectral imagery,” IEEE Tran
GRS, vol. 39, no. 3, pp. 529–545, 2001.

[3] R. Heylen and P. Scheunders, “Fully constrained least-
squares spectral unmixing by simplex projection,” IEEE
Tran GRS: Spec. iss. Remote Sensing, vol. 49, no. 11, pp.
4112–4122, 2011.

[4] J. P. Boyle and R. L. Dykstra, “A method for finding
projections onto the intersection of convex sets in hilbert
spaces,” Lecture notes in statistics, vol. 37, pp. 28–47,
1986.

[5] H.H. Bauschke and J.M. Borwein, “On projection algo-
rithms for solving convex feasibility problems,” SIAM
Review, vol. 38, no. 3, pp. 367–426, 1996.

[6] H.H. Bauschke and J.M. Borwein, “Dykstra’s alternating
projection algorithm for two sets,” Journal of Approxi-
mation Theory, vol. 79, no. 3, pp. 418–443, 1994.

[7] F. Kruse, J. Boardman, and J. Huntington, “Compari-
son of airborne hyperspectral data and EO-1 Hyperion for
mineral mapping,” IEEE Tran GRS, vol. 41, pp. 1388–
1400, 2003.

[8] E.M. Winter, “N-FINDR: An algorithm for fast au-
tonomous spectral end-member determination in hyper-
spectral data,” Proc. SPIE, vol. 3753, pp. 266–275, 1999.

5

