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ABSTRACT

Starting with a simple linear generative model and the as-
sumption of statistical independence of the underlying com-
ponents, independent component analysis (ICA) decomposes
a given set of observations by making use of the diversity in
the data. Most of the ICA algorithms introduced to date have
made use of one of the two types of diversity, non-Gaussianity
or sample dependence. We first discuss the main results for
ICA in terms of identifiability and performance with these
two types of diversity, and then introduce independent vector
analysis (IVA), generalization of ICA for decomposition of
multiple datasets at a time. We show that the role of diversity
in this case parallels that in ICA, and discuss identifiability
conditions and performance bounds in a maximum likelihood
framework.

Index Terms— Source separation, maximum likelihood,
identifiability and performance

1. INTRODUCTION

Independent component analysis (ICA) achieves successful
decompositions of a given set of observations under the as-
sumption of statistical independence and has been an active
area of research with a wide array of applications [10]. A re-
cent generalization of ICA, independent vector analysis (IVA)
[3,14,15] decomposes multiple datasets simultaneously using
the same generative model such that the source estimates are
aligned across all the datasets. The problem arises in many
domains such as medical imaging when analyzing multi-subject
functional magnetic resonance imaging (fMRI) data [19] and
when solving the convolutive ICA problem in the frequency
domain across multiple frequency bins [14]. Both ICA and
IVA make use of diversity in the datasets when achieving
the decomposition, and the two types of diversity that are
most frequently used are non-Gaussianity and sample depen-
dence of the underlying components. As one would expect,
the role of diversity—and hence the results for identifiability
and performance—in the two approaches parallel each other
closely. In this overview article, we first present a review of
the main results for ICA emphasizing the role two important
types of diversity plays in terms of performance and identifi-
ability conditions under the umbrella of maximum likelihood
(ML) theory, and then present new results for IVA that paral-
lel those results and generalize them to the multivariate case.
We emphasize the fact that linear dependence (correlation) is
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a strong concept in that it is sufficient for the separation of
sources under mild conditions both for ICA and IVA. How-
ever in terms of achievable performance, we can have sig-
nificant gains by making use of non-Gaussianity, i.e., higher-
order-statistics along with sample dependence.

2. ICA

We start with the basic ICA problem where x,s € R and
write
x(v) = As(v), (1)

where A is a full rank square mixing matrix, and hence we
assume instantaneous mixing and as many observations x,, as
sources/components s,—which also includes the overdeter-
mined case since one can easily reduce the problem to (1) for
this case. We assume that the index v can be time, or a spatial
or volume index, a voxel as in the case of fMRI analysis.

Given that the sources are mutually independent, one can
achieve ICA and form the source estimates u(v) = Wx(v)
by estimating the demixing matrix W making use of diversity
in some form. The most popular approach has been the use
of non-Gaussianity as the form of diversity, i.e., using higher-
order-statistics (HOS) to achieve the decomposition. Under
this umbrella, one can either start with mutual information
as the cost and arrive at the two most popular approaches,
based on either maximum likelihood (ML) or maximization
of negentropy to achieve the ICA decomposition, or can ex-
plicitly calculate HOS as in joint approximate diagonaliza-
tion of eigenmatrices (JADE) [7] among others [9, 10]. In this
overview, we concentrate on the former approach as it allows
the study of large sample properties in an ML framework,
and can also be used to study properties of another important
class of ICA algorithms under the same umbrella, those that
make use of sample dependence within a component/source
as the source of diversity. We start our discussion with the
general case and with the cost that takes advantage of sample
dependence together with non-Gaussianity, i.e., HOS, of the
sources. The natural cost in this case is the mutual informa-
tion rate [10, 17], which can be written as

1< <V

I.(W) =Y H,(u,) — log| det(W)| — H.(x) (2)

where H,.(u,) = lim, 00 H [ty (1), ..., u,(v)] /v is the en-
tropy rate of the nth source estimate wu,,. The entropy rate
H,.(x) = limy,_00 H [x(1),...,%x(v)] /v of the observations
is a constant with respect to W and thus the statistical depen-
dence among the separated sources is naturally minimized by



minimizing the total entropy rate of all source estimates. The
regularization term log | det(W)| penalizes ill-conditioned ma-
trices, and reduces (2) to maximization of negentropy rate as
the cost, i.e., minimization of sum of entropy rates under a
variance constraint when W is constrained to be orthogonal
(WWT = I so that the term is 0.

We assume that the sources are stationary, hence we have

Hy () = limy 00 H (U (0) g (v=1), tn (v-2), . .., up (1))

Further, to simplify the discussion for the ICA-IVA connec-
tions in terms of sample dependence as the source of diver-
sity, we let the extent of dependence be finite and given by K
which yields
H’r(un) = H(un) - H(ﬁn) (3)

where u,, = [ty (), up(v —1),...,up(v — K +1)]T € RE,
, = [up(v —1),...,u,(v — K +1)]7 € RE~! and the
expectation is with respect to ps, (u,). We include the index
for the random vector u,, and specifically write u,,(v) when
we refer to a given observation.

For a given set of observations X € RV*YV where V >
K, we estimate the sources using U(v) = WX(v) where
U(v) = [uy(v),uz2(v), ..., un(v)]" € RN*K and X is de-
fined similarly. Using this notation for finite memory condi-
tions we have the following log likelihood

v N
LOW) = ot D0 D logpa, (1)) — logpa, (it (1))
v=K n=1
+log | det W|
1 vV N
= VKTl Z Zlogpsn (un (V) [un(v —1),...,
v=K n=1
un(v — K + 1)) 4 log | det W| 4

The resulting expression is the conditional log likelihood to
be maximized for given V' observations—and hence the sign
in the cost (2) is reversed. When we assume independent and
identically distributed (i.i.d.) samples, i.e., ignore sample de-
pendence, in this case, the asymptotic equipartition property
directly yields from (2) the more commonly encountered form
of likelihood in ICA formulations

1 vV N
LOW) = 5 323 logps, (un(v) +log | det W (5)

v=1n=1

since non-Gaussianity is the more frequently used form of di-
versity in ICA. Here, u,(v) = wlx(v), using the random
vector notation for the observations (mixture) and Wz; is the
nth row of W. It is the form in (5) that leads to the popular
Infomax [4], along with all the ML variations using differ-
ent density models, e.g., using adaptive scores [21] or entropy
bound minimization (EBM) as in [18]—and when the demix-
ing matrix is constrained to be orthogonal as in FastICA [12],
and its variants such as efficient FastICA (EFICA) [16].

2.1. The gradient and the stationary point

Given the cost function, we can first study the stationary point

(or the estimating functions [6]), i.e., the solution of VZ,. (W) =
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OZ,(W)/OW = 0, or in the case of ICA, solution of the rel-
ative/natural gradient which yields a more convenient form
for identifying the condition at the stationary point besides
providing advantages in the update. It is the gradient post-
multiplied by WT'W, which is a positive definite matrix and
hence does not change the direction of the gradient, and elim-
inates the inversion of the demixing matrix in the update.

Using relative/natural gradient updates [1, 6], the likeli-
hood function in (4) can be maximized using

AW = (I- E{$(U)U"HW (6)

where the entries of ¢ (U) € RN*X  are given by
{$(0)}n g = —Ff

oul'ey
where ey, is the kth standard basis vector. When writing the
update, we have ignored the second pdf in (4), the pdf of the
K — 1-dimensional random vector, which can be included
for potentially better performance. Note that for a true ML
estimation, we also need to estimate the probability density
function (pdf) ps, (), which in this case is a multivariate pdf
since sample dependence is taken into account. An important
special case is given for the Gaussian source as 1, (u,,) =
R, 'u, where R,, = E{u,ul}.

If we assume that the samples are i.i.d., then the entries of
the score function are given by

al s (Un
O

which can be estimated much more easily than the previous
case as now we have the pdf of a univariate variable. It is
also worth noting that in many instances instead of estimating
the pdf, a simple nonlinearity selection mechanism can be im-
plemented depending on the super and sub-Gaussianity of the
sources, an approach that provides satisfactory performance
for most scenarios, but is a guasi ML approach rather than a
true ML approach.

What defines the stationary point AW = 0 is the pair-
wise condition, and for the general case given in (6), it is

E{t,(ul)w} =0 for n #1

which reduces to E{¢,(un)w;} = 0 for for i.i.d. samples,
and has been the motivation behind the first approach to ICA
using nonlinear decorrelations [8, 11]. Also, it is worth not-
ing that for this case, if we were to only use second-order
statistics and choose the linear Gaussian score function, since
R, = 021 where o2 is the variance of the nth source, the
stable point then corresponds to F{uiu;} = 0 for k # I,
and in this case, we can only achieve decorrelation.

2.2. The Hessian, CRLB, and identifiability

We assume that the mixtures are whitened and the sources
have unit variance, which implies that the product G = WA
should approximate a permutation matrix at the optimum and
hence u,, = s,. With these assumptions, the Cramér Rao
lower bound (CRLB) and the induced CRLB, i.e., the bounds
for the parameters that are actually estimated, W, and G co-
incide, and hence we have E{g2, ,,} = var(w, ).

For the local stability analysis of the ML cost in (4), we
form the Hessian with respect to the global demixing matrix
G = WA, with entries 0°L/9gm, 1n,0Gms.ny» Where gm n
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Fig. 1. CRLB and the performance of FBSS for correlated Gaussian
sources with low and high levels of sample correlation

are the entries of G. We evaluate the negative of the expected
value of the Hessian at the optimum G = I, assuming perfect
knowledge of the source distributions to obtain the Fisher in-
formation matrix (FIM). The positive definiteness of the FIM
is determined by the 2 x 2 matrix [5]

| Bmn 1
Jm,n - |: 1 Kn.m :| )

where £, ,,, = trace (E {1/)n(sn,)tp£(sn)} Rm), i.e., by the

pairwise relationship of sources for 1 < m < n < N and
J . n 18 positive definite unless there are any two sources that
are Gaussian with proportional covariance matrices. Hence,
one can achieve source separation unless there are two sources
that are both Gaussian and have covariance matrices that sat-
isfy R,, = aR,, for a # 0, a condition that also guaran-
tees identification of sources when only second-order statis-
tics are used as in weights-adjusted second-order blind iden-
tification (WASOBI) algorithm [22]. When we ignore sample
dependence and use the form in (5), we have R,, = I for
all sources (since we assume they all have unit variance) and
can only make use of non-Gaussianity, i.e., HOS, and hence
in this case we can separate sources as long as there is only
one Gaussian source in the mixture [9]—and obviously for
both cases, the separation is possible only upto a scaling and
permutation ambiguity that is inherent to the problem. The
CRLB can be evaluated using the inverse of J,,, ,, as [5]

)

(ﬁm,n - ’i;}n>7l , 1 7é m

®)

>
var(W, ) > v

where for the Gaussian score, we have £, , = Trace (R,,'R.,).

In Figures 1 and 2, we show the CRLB for two cases:
correlated Gaussian and i.i.d. super-Gaussian sources, real-
izations from a zero mean generalized Gaussian distribution
(GGD) given by py(s) = reiggye /9™ where T(-) is
the Gamma function and § is the shape parameter such that
B = 1 corresponds to Gaussian. Parameter « is chosen so
that the variance is unity. Results are shown for two cases:
(i) two Gaussian sources with two different degrees of sam-
ple correlation, lower correlation where the span of correla-
tion is two, and a second case where it is four and the first
two correlation coefficients are the same as the first (lower
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Fig. 2. CRLB and the performance of EBM with i.i.d. super-
Gaussian sources with low and high levels of non-Gaussianity

correlation) case; and (ii) two i.i.d. sources with both shape
parameters 3 first chosen as 0.7, and then as 0.4, i.e., corre-
sponding to lower and higher non-Gaussianity as measured
by the distance from that of a Gaussian. We plot the normal-
ized ISR given by (1/N(N — 1)) Z?fm,nzl,m;ﬁn} E{gzn,n}'
In the figure, along with the CRLB for these cases, we also
show the performance of two recent algorithms, EBM [18],
which ignores sample dependence but uses a flexible density
matching scheme, and full blind source separation (FBSS)
[17], which uses mutual information rate in (2) as the cost
and includes an effective model for sample dependence be-
sides EBM-based density estimation. As observed in the fig-
ures, the CRLB decreases with increasing correlation or non-
Gaussianity, and the two algorithms approach the bound as
the number of samples increase.

3. IVA

The IVA problem is defined similar to ICA except that we
now have K data sets, each containing V' samples, formed
from linear mixtures of /N independent sources [15],

x[#] (v) = AlFlglH (v),1<k <K,

1<V, (9

The vth sample of the zero-mean source vector, sl (v) =

0

vector s/, and Al € RV*N | = 1,... K are the invert-
ible mixing matrices. The underlying assumption is that the

T
(v),..., 55\];] (v)] € RY, is a realization of the random

individual source component vectors (SCVs) SZ; = [sg ]7 .

are statistically independent, i.e., the pdf of the concatenated
(S[K])T} € RVK can

be written as p (s) = Hgil Dn (sp). Note that in this case,
different from ICA, we do not consider sample dependence,
and in terms of notation, let s,, refer to the nth SCV, which
is a random vector, rather than the realization of a given K-
dimensional random vector. We show that linear dependence
as a form of diversity plays a similar role to that in ICA, but
now in terms of the use of dependence within a source com-
ponent vector, the vector that contains all the corresponding
sources from K data sets.

T
source vector, s” = {(sm) -

y Sn,

}



The problem is now that of finding K demixing matri-
ces WI* such that sources for each data set can be estimated
through ul*l = Wx[* for k = 1,..., K. The estimate of

T (1] (K]

the nth SCV is given as u,, = {un sy Un, } The mix-

n
ing matrices are potentially distinct for each data set and are
not necessarily related. Note that as in the case of ICA, the
sources and the mixing matrix can only be identified up to an
arbitrary order and scaling ambiguity [9]. However, by posing
the problem as a joint independent decomposition, the goal is
to eliminate the global permutation ambiguity in that the ar-
bitrary order of the sources within a data set is retained across
all K datasets.

As the cost, we use mutual information rather than mu-
tual information rate, as we are not taking the sample depen-
dence into account. The goal hence is the minimization of
mutual information among the SCVs—rather than individual
(univariate) sources as in ICA—and is written as

Tiva(W) = i H (u,) — i log ‘det (W[’“])‘ —C (10
n=1 k=1

where C is H(x!!, ... H(xI%]), a constant with respect to
the demixing matrices. We can rewrite the cost as [3]

N
Tiva(W) = Z (
n=1 \k=1

K
N w)|
;mg‘det (W )‘ c

to clarify the ultimate goal in the decomposition for IVA,
which is making sure that when we minimize the entropy
of all components to achieve independence, we also maxi-
mize mutual information, i.e., the dependence within each es-
timated SCV.

K

H (uy") I(un)>

3.1. The gradient and the stationary point

The relative/natural gradient update of the demixing matrix
for each data set takes the form

AW = (1 - E {qp““] (u) (u[k])T}> wi - an

as in ICA, and now the score vector is given by
(k] [k] [k] T RN
Wl () = [0l (), ol (an)] e R

where 1/1%1 (u,) = —0logps, (un)/auw , L.e., it is formed by
selecting the kth entries from each of the N multivariate score
functions, ¥ (u,) = —dlogps, (u,)/0u, € RE. It is im-
portant to note that t[¥! (u,,) is a function of the multivariate
random vector, i.e., the nth estimated SCV, and in implemen-
tation, we have to estimate the multivariate pdf along with the
demixing matrices to achieve a true ML solution. The im-
portant special case, Gaussian pdf, gives ¥(u,,) = R, ',
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whose kth entry is 1/17[?} (u,) = elR, Lu,, where ey, is the
kth basis vector and R,, = E{u,ul}. In this case, the sta-
tionary point is given by

E{tYn(up)u} =0 for n #1, for k=1,..., K.

3.2. The Hessian, CRLB, and identifiability

For IVA, similarly we evaluate the Hessian at G = I when the
source estimates are given by s,,, and now the performance
and identifiability conditions are determined by the pairwise
interactions of the SCVs rather than sources as in ICA:

Jm,n: |: KTR ’CI ]7 1§m<n§N, where
’ (12)
DU ()
{Konntiy o, = F {u[kz] {Rn}ti, gy 1<mn<N

and {Ry,}k, 0, = F {s[fl]sﬂﬁ]}. From (12), we can write

the CRLB for the estimates of the demixing matrix entries
as [2]

var (wlt], ) T

1 _
>Vek )lek,lgm#nSN.

13)

!

n,m

(’CnL,n

Othm ()

O,

For a single data set, we have IC,,, ,, = E { } 03
= Km, since 02 = 1, now a scalar quantity, derivative of
univariate score function for X = 1. The CRLB then assumes

the form in [20]

1
> -
-V

-1
n

)717 m#mn

var (Wp,n) (mm — K
where the bound is derived for the widely employed case that
only considers non-Gaussianity ignoring source dependence.
This bound can also be recognized as a special case of (8),
since for i.i.d. sources, R, = I, and ,, ,, in (7) is written as
E{y*(un)} = —E {0v(uy)/0u,} = Kk, using the regular-
ity condition E{¢(u)} = 0, which we assume holds [13].

Another important special case for the IVA approach, which
also leads to the conditions for identifiability, is obtained us-
ing the multivariate Gaussian prior for the SCV, hence ignor-
ing the higher-order statistical information. In this case, we
have [3]

Kpnn=R,'oR,, 1<m#n<N (14)

and the Fisher information matrix is a positive semidefinite
block diagonal matrix, and is singular if and only if

R, oR, - (R;'oR,) ' =0

holds for any 1 < m # n < N, i.e., the expression is pos-
itive semi-definite—assuming nonsingular covariance matri-
ces. Here, A o B denotes the Hadamard or Schur element-
wise matrix product of A and B. If any two SCVs both
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Fig. 3. CRLB as a function of the shape parameter, 8 for three SCVs with (left)) random, and (right) identity covariance

matrices. Note that the SCV is multivariate Gaussian for 8 =

have block diagonal covariance matrices where at least two
of the equivalent blocks of the covariance matrices are es-
sentially identical, i.e., they satisfy R,, = DR,,,D for 1 <
m # n < N, where D is any full rank diagonal matrix,
then the FIM becomes positive semidefinite. Note the simi-
larity of this condition to the one for ICA when sample de-
pendence is taken into account, which states that the sources
cannot have proportional covariance matrices. Finally it is
worth noting that the CRLB for IVA (13) with the multivari-
ate Gaussian assumes a form similar to the one in (8), which is
given in [22] for source separation using second-order statis-
tics var(Wpm,n) > (Km,n — /f;lm)_l /V.

We study the behavior of CRLB for two cases. First in
Figure 3, we show the CRLB for three SCVs each with a
randomly selected covariance matrix that admits a solution
with the Gaussian multivariate prior for K = 3. In this case,
the normalized ISR (induced CRLB) is defined as ISR, ,orm =

K N K )2

/KN (N —=1)> 5y Z{rn,n:lﬂn;ﬁn} (gm,n> . We control
the non-Gaussianity of the SCV, again using a shape parame-
ter 3 for the multivariate GGD. The normalized ISR decreases
as the SCVs become more non-Gaussian and is maximum
when § = 1, for the multivariate Gaussian case. The sec-
ond case shown in Figure 3 on the right uses the same SCVs
but now without any dependence within an SCV. Note the
divergence for multivariate Gaussian (8 = 1) when there is
no linear dependence to be used to achieve diversity. Even
though the range of normalized ISR values in the figure makes
it difficult to observe, the CRLB is significantly higher for the
uncorrelated case compared to the first (correlated) case even
when we move away from Gaussianity, i.e., for values of
away from 1.
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