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ABSTRACT

In this paper, we approach the problem of audio summariza-
tion by saliency computation of audio streams, exploring the
potential of a modulation model for the detection of perceptu-
ally important audio events based on saliency models, along
with various fusion schemes for their combination. The fu-
sion schemes include linear, adaptive and nonlinear methods.
A machine learning approach, where training of the features
is performed, was also applied for the purpose of comparison
with the proposed technique. For the evaluation of the algo-
rithm we use audio data taken from movies and we show that
nonlinear fusion schemes perform best. The results are re-
ported on the MovSum database, using objective evaluations
(against ground-truth denoting the perceptually important au-
dio events). Analysis of the selected audio segments is also
performed against a labeled database in respect to audio cat-
egories, while a method for fine-tuning of the selected audio
events is proposed.

Index Terms— monomodal audio saliency, modulation
model, audio summarization

1. INTRODUCTION

The amount of multimedia data in the web is constantly in-
creasing with audio/music databases, diverse recordings, lec-
tures and presentations, TV programs archives etc. Since
there is usually no labeling attached to it, there is the constant
need of finding new techniques to summarize the content of
such data. Current techniques propose a variety of audio fea-
tures, such as short-time energy, zero crossing rate, MFCCs,
chroma features and others, and the approaches include au-
dio classification and segmentation, repetition detection, and
knowledge-based rules.

This paper addresses the issue of audio event detection
and summarization. We approach this issue with saliency
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computation which offers an abstraction of a measure of in-
terest to audio frames. A saliency based model can be found
in [1] used for the automated extraction of music snippets.
After a basic feature extraction, salient segments are detected
based on their occurrence frequency and their energy. Bound-
aries of phrases are detected so as to ensure that the final
segment includes meaningful phrases. Attention models for
video summarization are used in [2], where each frame of a
video sequence is assigned an attention value, depending on
the viewer’s attention. Audio saliency, in this case, is based on
energy features, since loudness attracts people’s attention. In
[3], video summarization is attempted, where the summariza-
tion of the audio cue is approached using segmentation and
classification of audio events in order to extract the bound-
aries of the segments, using standard features such as MFCCs
and K-means clustering for the selection of the segments in-
cluded in the summary.

In this paper, we use audio data extracted from movies
for audio event detection and summarization, employing a
modulation model and various linear, nonlinear and adap-
tive fusion schemes for the construction of a saliency curve.
In Section 2, we also evaluate the performance of the ex-
tracted audio events against human labeled ground truth of
audio saliency. In Section 3, a machine learning approach is
applied to validate the efficiency of the various saliency mod-
els. Finally, in Section 4, we examine the type of the extracted
segments against ground truth of labeled audio categories on
movie segments of various genre, and we propose a technique
for the correction of their boundaries.

2. AUDIO ANALYSIS AND MODELING

In this paper, the issue of saliency computation in an audio
stream is approached as a problem of assigning a measure
of interest to audio frames, based on spectro-temporal cues.
The importance of amplitude and frequency changes for au-
dio saliency has motivated a variety of studies where subject
responses are measured with respect to tones of modulated
frequency or loudness [4, 5, 6]. Amplitude and frequency
modulations are also important for auditory grouping [7] and
recognition of audio sources and events. In the model used,
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the saliency is quantified through a combination of modula-
tion parameters of non-stationary components. This results
in a compact representation of the audio stream by tracking
the components with maximal energy contribution across fre-
quencies and time.

The analysis and saliency-modeling of the audio stream is
based on the AM-FM model for audio signals (speech, music,

environmental sounds): s[n] = 3", Ag[n] cos ([T Qx[n]dn).

The instantaneous amplitude Ay[n] and frequency x[n] are
estimated by multi-band filtering s[n] with Gabor filters hy,
and then, by applying the Teager energy operator ¥ and
the energy separation algorithm to each filter output. We
then, compute the mean instantaneous amplitude MIA[m] =
(|A;[n]|) and frequency MIF [m] = (£2;[n]), from the energy-
dominant modulation component along multiple frequency
bands [8], i.e., the component j = j[m] which maximizes the
average Teager energy MTE[m] = argmax; (U(s* hy)),
where m is the frame index and (-~) denotes time averaging.
Details about the feature extraction and implementations can
be found in [8, 9].

The audio stream is thus described by the 3D feature vec-
tor F,[m] = [MTE, MIA, MIF] [m], which conveys informa-
tion on excitation level, frequency content and source energy,
related to the presence and evolution of audio events. Vari-
ous fusion and normalization schemes are investigated for the
combination of MTE, MIA and MIF, resulting in a single au-
dio saliency curve.

2.1. Intramodal Fusion of audio features

A variety of fusion schemes were experimentally evaluated to
obtain a saliency curve which forms the basis for the selec-
tion of perceptually important audio events for the creation of
meaningful audio summaries. The problem examined in this
paper is the low level intramodal fusion where the features
are normalized and fused to produce a monomodal saliency
curve, where each value corresponds to a measure of percep-
tual importance of the individual feature streams. Individual
features are normalized with respect to their value range prior
to fusion in order to ensure a mapping to [0, 1] and compen-
sate for the difference in their dynamic range by least squares
fitting of their values. The developed saliency curve has a
number of attractive properties. It is a continuous valued
function of time, constrained by appropriately designing the
fusion norm to reside in [0, 1] and it is formed through an un-
supervised, bottom-up approach, approximating the sensory-
level attention invoked by the audio stream to a listener.

The normalized feature vectors are combined using
frame-level fusion of their values: Sy = fusion(Sy, Sa, S3).
The fusion frameworks examined are: 1) Weighted lin-
ear combinations with equal or unequal, fixed weights. 2)
Variance-based weights, inversely proportional to each fea-
ture saliency’s uncertainty. 3) Nonlinear norms, e.g., max,
min and weighted min. 4) Finally, time-adaptive, dynamic
weights, using the syntactic structure of the video (e.g., scene

and shot changes in movies) in order to find the optimum
scheme which is going to be used for the final summary.
Linear Fusion: The most intuitive option is a weighted
average of normalized saliency values which is based on a
weighted linear combination of the audio features:

Siin = w151 + w252 + w3 Ss. (1
The simplest such scheme is to equally weight the three fea-
tures vectors (LE).
Adaptive (Variance-based) Fusion: Each feature stream is
weighted inversely proportional to its variance:

Svar = Y _(Si/var(S;)) /2(1 Jvar(S;)). 2)

3
Nonlinear Fusion: (i) min (MI) and (ii) max (MA) fusion,
i.e., taking the minimum or maximum value of the three ex-
amined audio cues at each frame respectively,

Smin = min{Sl, Sg, Sg}, Smax = maX{Sl, 527 53} (3)
Additionally, a new min-fusion scheme was examined, the
weighted min fusion (MIVA) which can be applied globally
and adaptively. In this case, each feature stream is addi-
tively weighed inversely proportional to its log variance:
w; = log(1/var(S;))

Smiva = min(Sl — w1, SQ — Wy, Sg — w3) (4)
+ max(wy, wa, w3).
This scheme is algebraically homomorphic to the linear
variance-weighted scheme of (2).

The normalization intervals that were investigated are: (i)
global linear normalization (GL) where scaling is performed
for the whole audio stream, (ii) scene-based linear normal-
ization (SC) where each scene is separately normalized, and
(iii) shot-based linear normalization (SH) where each shot is
separately normalized. Dynamic adaptation, i.e., weight up-
dating is also considered with respect to global or local win-
dows. For instance, for the inverse variance weighting and the
min variance fusion schemes the variance of each stream can
be computed at the global (VA-GL), shot (VA-SH) or scene
(VA-SC) level.

2.2. Summarization Algorithm for Audio Event Detection

Since the audio streams, used in this paper, are extracted from
movies, the summarization algorithm is based on [9] and fol-
lows these steps: (i) Filtering of the audio saliency curve with
a median filter of length 20/ + 1 frames. (ii) Saliency thresh-
old selection S, dictated by the percent of summarization ¢
required, where frames m with value Sa[m] > S, are se-
lected. For example, for 20% summarization (¢ = 0.2), S,
is selected so that the cardinality of the set of selected frames
D = {m : Sa[m] > S.} is 20% of the total number of
frames. The result is a frame indicator function /. for the de-
sired level of summarization c. (iii) Combination of frames
into segments. Segments that are shorter than /N frames are
deleted from the summary. (iv) Neighboring segments that
are selected for the summary are merged if they are less than
K frames apart. (v) Rendering of the selected segments into
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Features Audio Feature Fusion
Evaluated on Audio (A) Labeling
Summarization Percent
Algorithm 20% | 33% | 50%
Norm | Fusion Precision Scores
GL-N | LE-F 68.8 | 66.1 61.9
GL-N | MA-F 488 | 512 52.6
GL-N | MI-F 92.6 | 83.6 73.8
GL-N | MIVA-GL-F 92.6 | 83.6 73.8
GL-N | MIVA-SC-F 91.1 81.9 72.8
GL-N | MIVA-SH-F 919 | 834 73.7
GL-N | VA-GL-F 91.6 | 81.0 70.5
GL-N | VA-SC-F 853 | 758 68.2
GL-N | VA-SH-F 900 | 82.8 72.6
SC-N | LE-F 66.1 | 64.3 62.0
SC-N | MI-F 778 | 732 69.1
SC-N | MIVA-GL-F 780 | 733 68.9
SC-N | MIVA-SC-F 776 | 723 67.6
SC-N | VA-GL-F 72.6 | 683 63.7
SC-N | VA-SC-F 72.6 | 654 61.6
SH-N | LE-F 732 | 68.8 64.2
SH-N | MI-F 68.9 | 67.6 64.7
SH-N | MIVA-GL-F 66.9 | 66.2 63.5
SH-N | MIVA-SC-F 684 | 669 64.4
SH-N | MIVA-SH-F 66.9 | 66.0 63.6
SH-N | VA-GL-F 732 | 689 64.2
SH-N | VA-SC-F 734 | 693 64.7

Table 1: Frame-level summarization precision scores for audio fea-
ture fusion. Audio features are evaluated on audio annotation.

a summary by using simple overlap-add on L video frames to
tailor together neighboring segments. The evaluated version
of the algorithm for this case operates with M = N = 30
frames, K = L = 15 frames for videos at 25 fps.

2.3. Objective Evaluation of Fusion Schemes

We evaluate three different normalization schemes: global
(GL), scene-level (SC) and shot-level (SH), as well as nine
fusion schemes: linear (LE), min (MI), weighted min at dif-
ferent levels (MIVA-GL, MIVA-SC, MIVA-SH), max (MA),
and inverse variance at different levels (VA-GL, VA-SC, VA-
SH). For this purpose, we used the audio stream extracted
from six 30-minute movie clips from the MovSum database, a
joint work of the NTUA and TUC labs, including movie clips
from the following Oscar-winning movies of various genres:
“Chicago”, “Crash”, “Departed”, “Gladiator”, “Lord of the
Rings III” and “Finding Nemo”. Each clip on the database
is perceptually and cognitively labeled, regarding the salient
events, forming ground-truth data for objective evaluation
purposes. The evaluation was performed against the audio
(A) layer, consisting of segments that are acoustically inter-
esting. The segments that are considered acoustically salient
formed a binary saliency indicator function, consisting of
frames labeled as salient by at least two of the three expert
labelers.

Our intention is to examine whether the intramodal fu-
sion of the audio cues evaluated against the ground-truth of
the audio annotation (A) can form summaries that consist of
segments that are both meaningful and chosen by the users as
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Fig. 1: Frame-level summarization precision scores for the five best
performing fusion schemes and the baseline method LE-F. (Please
see color version for better visibility.)

salient. For experimentation purposes, we altered the param-
eters of the summarization algorithm and specifically, the size
of the minimum segment that could be selected. The results
that are presented next, consider a minimum segment of 30
frames which was empirically found to be a good choise for
this task.

Table 1 presents the results in terms of frame-level preci-
sion scores, since it best characterizes the frame-level perfor-
mance on event detection tasks. The scores are presented for
audio feature fusion for summaries that include 20%, 33%
and 50% of the original number of frames for all possible
combinations among the normalization and fusion schemes
(best scores are shown in bold). We observe that for all tasks
and evaluation settings global normalization significantly out-
performs shot- and scene-level normalization schemes, and
for the GL normalization cases (a) nonlinear MI-F and MIVA-
F fusion schemes outperform linear fusions and MA-F, while
(b) the inverse variance schemes (VA-GL, VA-SC, VA-SH)
outperform LE-F and MA-F fusion.

Figure 1, shows frame precision results as a function of
summarization level (ranging from 5% to 70%), for global
normalization and the five best performing fusion schemes
plus the baseline LE for audio feature fusion tasks. We ob-
serve that MI and MIVA-GL perform equally good. MIVA-
SH also performs as good for summaries including over 40%
of frames, followed by VA-SH and VA-GL. LE-F which is
regarded as the baseline method performs significantly worse
compared to the rest of the fusion schemes.

3. MACHINE LEARNING APPROACH

Next, we investigate a machine learning approach to au-
dio summarization where classifiers are trained using the
frame-based audio features presented in Sec. 2. This method
is applied in order to validate the efficiency of the pro-
posed saliency models. Specifically, we use the ﬁd[m} =
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Fig. 2: Frame Precision using NNR classifiers.

[MTE, MIA, MIF] [m] feature vector along with its first and
second time derivatives computed over three and five frames
respectively. We report (frame precision) results using a
nearest neighbor classifier! (NNR-k) that is trained on the
manually annotated movie corpus using the binary markings
(1 for frames where audio events are present, O otherwise).
Thus the classifier output is a binary indicator function of 0’s
(no event) and 1°’s (audio event). Six-fold cross-validation
is used, i.e., NNR-k models are trained on five movies and
tested on the sixth. For the purposes of selecting the frames
that are more likely to correspond to audio events we report
results using the following (smoothing) heuristics on the clas-
sifier output: (i) No smoothing, i.e., raw frame-based results
(RAW), (ii) Median-filtering on the raw classifier output with
window of length 2M + 1 (MED), (iii) Application of the
summarization algorithm of Sec. 2, as if the classifier output
was the thresholded saliency curve (SUM).

In order to obtain results for variable compression rates,
we define a confidence score for each classification result, i.e.,
each frame. We choose as confidence score the portion of
the k nearest neighbors that are marked as 1 (audio events);
this roughly corresponds to the posterior probability of the
audio event class for that frame. Results are presented both
for the raw confidence scores (CSRAW), as well as, the me-
dian filtered confidence curve with window of length 2K + 1
(CSMED). Results are shown in Fig. 2 for all combinations
of post processing of classifier output and confidence scores,
e.g., “SUM-CSMED” refers to using the summarization al-
gorithm for post-filtering classifier output and median filter-
ing for smoothing the confidence score curves. The param-
eters are optimized to achieve the best possible classifica-
tion accuracy scores to k = 250 neighbors for NNR, and
M = K = 50 frames for median filtering.

Overall, precision scores achieved using the NNR clas-

!'Similar results can be obtained using Gaussian mixture models or sup-
port vector machine classifiers.

sifier are better than those achieved using the saliency curve
approach with the exception of the 5 — 20% summarization
region, where only the median filtered confidence scores
(CSMED) achieve better performance. Post-filtering of the
classifier output (MED, SUM) improves on the baseline preci-
sion somewhat (RAW) in the 30-70% summarization region.
Finally, post-filtering of the confidence scores (CSMED) sig-
nificantly improves precision in the 5-50% region over the
raw estimates (CSRAW).

4. EVENT STRUCTURE ANALYSIS AND
SUMMARIZATION

In this section, we analyze and evaluate the type of segments
chosen by the summarization algorithm, while we propose
a technique for correction of the boundaries of the selected
segments included in the final audio summary.

The evaluation is performed on a different database of
movie segments of various genres, consisting of four 3-4 min
long clips from a documentary, a music documentary, and two
different movies, including a variety of audio classes. The
segments of this database are labeled in respect to various
audio categories such as: speech, music, background mu-
sic, song, environmental sounds, e.g., wind, waves etc, ma-
chine sounds, “foley” sounds, e.g., laughter, applause, foot-
step, knocking, and impact sounds, e.g., “bang” (gunshot),
“boom” (explosion) and smash sounds.

The following discussion concerns the type of the auto-
matic extracted audio events. We evaluate the best fusion
scheme from the previous analysis MI-F (GL-N) and com-
pare it to the baseline LE-F (GL-N). We note that MI-F fusion
includes almost all speech segments for longer summaries,
while only the most prominent, high intensity speech seg-
ments for smaller summaries. It also includes intense and
loud music segments (which did not function as background
music), all impact sounds, e.g. gunshots, machine sounds and
sounds that stood out in silence. For the music documentary,
we observe that the music segments are favored, most prob-
ably because of their high intensity in comparison to speech
(interview segments). Table 2 shows the percentage of frames
extracted by the summarization algorithm belonging to a spe-
cific audio category. The total percentage of frames of each
type of audio is also presented for reference reasons, (shown
in “% of frames for each audio category”).

Audio Summarizer: In this final step, we describe an al-
gorithm for the adjustment of the automatic extracted audio
events. As already discussed, we use the audio saliency as an
indicator function curve that marks the most prominent audio
segments. This is automatically performed by the summariza-
tion algorithm, Sec. 2.2, depending on the required thresh-
old set by the user. In order to make the system more robust
and be able to choose segments that are not only salient but
also form meaningful phrases, we perform correction of the
boundaries of the extracted events, using the boundaries of
the manually segmented audio categories. This is achieved
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Type of Audio Movie (3 min) Music Documentary (4 min)
Algorithm MI-F LE-F % of frames MI-F LE-F % of frames
Summarization Percent [| 20% | 50% 20% | 50% || foreach audio || 20% [ 50% 20% | 50% || for each audio
% of detected frames category % of detected frames category

Audio Category

| Speech T T T T 280 | 820 188 | 709 36.6 0 259 1.5 | 292 61.0
Music 204 | 555 233 | 430 17.5 580 | 88.1 50.5 80.9 35.0
Background Music 36.8 | 68.6 272 | 512 359 0 25.1 1.3 28.8 521
Song - - - - - 83.1 100 76.87 | 98.6 19.8
Environmental 38.6 | 525 71.9 95.0 83 - - - - -
Machine 335 | 812 234 | 629 4.6 50 100 59.5 59.5 0.7
Foley 18.0 | 47.6 1755 | 418 10.0 0 10.6 19.5 100 19
Impact 100 100 86.1 100 23 0 100 0 385 0.2

Table 2: Frame-level summarization percentage of correct frames belonging to a specific audio category for audio feature fusion for the best

fusion scheme MI-F and the baseline LE-F with GL normalization.
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Fig. 3: Block diagram of the summarization system.

using ideas from mathematical morphology and specifically,
the reconstruction opening: p~ (M|X) £ connected compo-
nents of X intersecting M. In such a way, we can extract
large-scale components by knowing only smaller markers in-
side them, i.e. the initially extracted audio events. In this
case, since we do not employ an automatic audio segmenta-
tion algorithm, we perform this final step by using as marker
M the thresholded saliency function, marking the segments
that will be included in the final summary and as reference X
the labeled audio-specific annotation. Note that for audio in-
cluding speech, a VAD algorithm as in [8] could provide auto-
matic segmentation. This action is regarded significant for the
performance of the system, especially for the comprehension
of speech segments. The boundary correction is expected to
improve the method’s accuracy, since human labelers tend to
choose unified segments especially concerning speech. Fig-
ure 3 shows the process of audio summarization procedure
from feature extraction to the final adjusted summary.

5. CONCLUSIONS
Linear and nonlinear fusion schemes have been proposed to

integrate audio cues from movie clips in order to create a
monomodal saliency curve with applications to audio event

detection. The thresholded audio saliency in combination
with manually segmented events constitutes the final system
for audio summarization. Among the various normalization
and fusion schemes investigated, global normalization (GL),
min fusion (MI), weighted min (MIVA) and shot-variance
(VA-SH) schemes work very well. The evaluation of MI-F
against labeled database with audio categories showed that
it is well suited for both generic audio streams and music-
oriented too. The machine learning approach employed
achieved better results than those achieved using the saliency
computation approach, with the exception of the 5 — 20%
summarization region. However, we consider significant the
fact that the proposed bottom-up saliency models gain almost
as good scores for the smaller summaries. For future work,
we intend to perform automatic segmentation and classifica-
tion of the audio streams in order to create a fully automatic
summarization system.
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