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ABSTRACT

Providing prior knowledge about sources to guide source sep-
aration is known to be useful in many audio applications. In
this paper we present two tensor factorization models for mu-
sical source separation where musical information is incorpo-
rated by using the Generalized Coupled Tensor Factorization
(GCTF) framework. The approach is an extension of Non-
negative Matrix Factorization where more than one matrix or
tensor object is simultaneously factorized. The first model
uses a temporally aligned transcription of the mixture and in-
corporates spectral knowledge via coupling. In contrast of
using a temporally aligned transcription, the second model
incorporates harmonic information by taking an approximate,
incomplete, and not necessarily aligned transcription of the
musical piece as input. We evaluate our models on piano and
cello duets where the experiments show that instead of using a
temporally aligned transcription, we can achieve competitive
results by using only a partial and incomplete transcription.

Index Terms— Informed Source Separation, Coupled
Tensor Factorization, Non-negative Matrix Factorization

1. INTRODUCTION

Audio source separation is one of the key problems in com-
puter music and acoustic processing. The aim is to estimate
individual sources from an audio mixture. This problem is
called underdetermined if the number of channels is less than
the number of sources in the mixture.

The first approaches to solve underdetermined source sep-
aration involved blind source separation techniques [1]. How-
ever, audio signals are highly complex, and blind methods fall
short in exploiting useful domain specific knowledge. Incor-
porating domain specific information via signal models yields
to informed source separation methods and there exists sev-
eral studies that make use of different kinds of information. In
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the case where the original source signals are known before-
hand, [2] presented a method which is based on extracting
side information from the original sources and using this in-
formation at the source separation process. Another informed
source separation method is proposed in [3] which makes use
of a temporally aligned transcription of the audio mixture.

In this study, we present two models for musical source
separation by using the Generalized Coupled Tensor Factor-
ization (GCTF) framework [4]. Our first model makes use
of a temporally aligned MIDI file and incorporates spectral
information via coupling with isolated note recordings. The
second model also incorporates spectral information, however
instead of using a temporally aligned transcription, this model
incorporates harmonic information by taking an approximate,
incomplete, and not necessarily aligned transcription of the
piece as input. Arguably, this approach is clearly more practi-
cal as often a complete score of a musical piece is simply not
available.

The rest of the paper is organized as follows. We de-
scribe the GCTF framework and the inference algorithm in
Section 2. We present our models for score guided source
separation in Section 3. In Section 4, we provide the evalu-
ation results of the models. Finally, Section 5 concludes this
paper.

2. GENERALIZED TENSOR FACTORIZATION

The Generalized Coupled Tensor Factorization (GCTF)
framework [4] is a direct generalization of the Probabilistic
Latent Tensor Factorization (PLTF) framework to factorize
simultaneously more than one multiway array (tensor or ma-
trix). The PLTF model can be viewed as a natural extension
of the matrix factorization [5]. The signal model of PLTF is

X(v0) ≈ X̂(v0) =
∑
v̄0

∏
α

Zα(vα), (1)

where α = 1, ...|α| is the factor index. In this framework,
the goal is computing an approximate factorization of a given
tensor X in terms of a product of individual factors Zα, some
of which are possibly fixed. Here, we define V as the set of all
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indices in a model, V0 as the set of visible indices, Vα as the
set of indices in Zα, and V̄α = V −Vα as the set of all indices
not in Zα. We use small letters as vα to refer to a particular
setting of indices in Vα.

Since the product
∏
α Zα(vα) is collapsed over a set of

indices, the factorization is latent. The optimization problem
is to minimize the discrepancy between the observation X
and the model output X̂ , as given by a divergence function
d(X, X̂). This divergence is a quasi-squared-distance and is
typically taken as Euclidean (EUC), Kullback-Leibler (KL)
or Itakura-Saito (IS). To illustrate our nonstandard notation,
we define the nonnegative matrix factorization (NMF) model
of [6] in the PLTF notation as follows:

X(f, t) ≈ X̂(f, t) =
∑
i

D(f, i)E(i, t) (2)

where Z1 ≡ D, Z2 ≡ E, and the index sets V = {f, t, i},
V0 = {f, t}, V1 = {f, i}, and V2 = {i, t}. A detailed study
on audio modeling via PLTF can be found in [7].

The Generalized Coupled Tensor Factorization (GCTF)
model takes the PLTF model one step further where in this
case we have multiple observed tensors Xν that are factor-
ized simultaneously:

Xν(v0,ν) ≈ X̂ν(v0,ν) =
∑
v̄0,ν

∏
α

Zα(vα)R
ν,α

(3)

where ν = 1, ...|ν| and R is a coupling matrix that is defined
as follows:

Rν,α =

{
1 Xν and Zα connected
0 otherwise . (4)

The coupling matrix Rν,α specifies factors α that effect the
ν’th observed tensor. Note that, as opposed to the PLTF
model, GCTF model contains multiple visible index sets
(V0,ν). We can give the following example in order to illus-
trate the GCTF framework:

X̂1(i, j, k) =
∑
r

Z1(i, r)Z2(j, r)Z3(k, r) (5)

X̂2(j, p) =
∑
r

Z2(j, r)Z4(p, r) (6)

X̂3(j, q) =
∑
r

Z2(j, r)Z5(q, r) (7)

Note that the factor Z2 is shared among all the observations.
Here, we have three observed tensors, therefore three simul-
taneous factorization problems. In this case, we have the fol-
lowing R matrix with |α| = 5, |ν| = 3

R =

 1 1 1 0 0
0 1 0 1 0
0 1 0 0 1

 . (8)

Table 1. Update rules for different p values. EU, KL, and IS
correspond to Euclidean, Kullback-Leibler, and Itakura-Saito
divergences, respectively.

p Cost Function Multiplicative Update Rule

0 EU Zα ← Zα ◦
∑
ν R

ν,α∆α,ν(Mν◦Xν)∑
ν R

ν,α∆α,ν(Mν◦X̂ν)

1 KL Zα ← Zα ◦
∑
ν R

ν,α∆α,ν(Mν◦X̂−1
ν ◦Xν)∑

ν R
ν,α∆α,ν(Mν)

2 IS Zα ← Zα ◦
∑
ν R

ν,α∆α,ν(Mν◦X̂−2
ν ◦Xν)∑

ν R
ν,α∆α,ν(Mν◦X̂−1

ν )

2.1. Estimation

Estimation of the latent factors Zα can be achieved via iter-
ative methods, by fixing all factors Zα′ for α′ 6= α but one
Zα and updating in an alternating fashion(see [4]). For non-
negative data and factors the update has a simple form

Zα ← Zα ◦
∑
ν R

ν,α∆α,ν(Mν ◦ X̂−pν ◦Xν)∑
ν R

ν,α∆α,ν(Mν ◦ X̂1−p
ν )

. (9)

where ◦ is the element-wise product (Hadamard product) and
Mν is a binary mask that specifies observed and missing el-
ements: Mν(v0,ν) = 1 (Mν(v0,ν) = 0) if Xν(v0,ν) is ob-
served (missing). In source separation this array is typically
just one but the approach allows for missing data as well. The
parameter p determines the cost function to be used: for p =
{0, 1, 2} correspond to the β-divergence [8] that unifies Eu-
clidean, Kullback-Leibler, and Itakura-Saito cost functions,
respectively. The key quantity in the above update equation is
the ∆α,ν function that is defined as follows:

∆α,ν(A) =

 ∑
v0,ν∩v̄α

A(v0,ν)
∑
v̄0∩v̄α

∏
α′ 6=α

Zα′(vα′)
Rν,α

′


(10)

For updating Zα, we need to compute this function twice for
arguments A = Mν ◦ X̂−pν ◦Xν and A = Mν ◦ X̂1−p

ν . The
individual cases are summarized in Table 1. While the defi-
nition looks complicated, a key observation is that the ∆α,ν

function is just computing a product of tensors and collapses
this product over indices not appearing in Zα, which is alge-
braically equivalent to computing a generalized matrix prod-
uct.

3. SCORE GUIDED SOURCE SEPARATION

In this section, we present two tensor factorization models for
musical source separation. Both models are based on NMF
and the basic idea in our models follows the notion of de-
composing the magnitude spectrum of the mixture (X1) as
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Table 2. Evaluation results of the proposed models. M1 denotes the first model and M2d denotes the second model where d is
the duration of the transcription in seconds. The best results are shown in bold.

SIR SAR SDR
p = 0 p = 1 p = 2 p = 0 p = 1 p = 2 p = 0 p = 1 p = 2

M1 12.09 14.82 18.76 9.62 10.23 8.54 7.03 8.55 8.01
M245 7.85 20.08 21.02 6.31 13.25 6.72 2.06 12.34 6.42
M230 7.53 14.51 18.18 6.83 10.97 6.21 2.66 8.66 5.36
M210 6.39 11.17 14.91 8.12 9.35 6.25 2.57 5.37 4.82
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Fig. 1. General sketch of the first model. The idea is to
incorporate information from the recordings of the instru-
ments. The excitation matrix is also restricted by a temporally
aligned transcription. The blocks visualize the tensors and the
arrows denote the relation between them. The lower-case let-
ters and small arrows near the blocks represent the indices of
a particular tensor. Note thatN and T matrices are masks that
are applied on E and F , respectively.

the multiplication of a spectral dictionary (D) and the corre-
sponding excitations (E) as firstly demonstrated in [9]. By
this approach, the sources can be separated by Wiener filter-
ing after the factors D and E are estimated.

3.1. Model I

In our first model, we combine two different NMF models that
share the dictionary matrix D. The aim in this model is to in-
corporate spectral information by coupling the observed mix-
ture with isolated note recordings. Here, the excitation matrix
E is further restricted by a temporally aligned transcription of
the mixture (N ). The model is defined as follows:

X̂1(f, t) =
∑
i

D(f, i)E(i, t)N(i, t) (11)

X̂2(f,m) =
∑
i

D(f, i)F (i,m)T (i,m) (12)

where f is the frequency index, t and m are time frame in-
dices, and i is the index of the spectral templates. Under Eu-
clidean or KL divergences, X1 is the magnitude spectrum of

the audio mixture and X2 is the magnitude spectrum of con-
catenation of isolated recordings corresponding to different
notes. If IS divergence is chosen, both X1 and X2 are power
spectra. Besides, N is the temporally aligned transcription
of the mixture where N(i, t) = 1(0) if the note i is played
(not played) during the time frame t. Similarly, T is also a
0 − 1 matrix, where T (i,m) = 1(0) if the note i is played
(not played) during the time frame m and F models the time
varying amplitudes of the isolated notes. Figure 1 visualizes
the general structure of the model. The coupling matrix R for
this model is defined as follows:

R =

[
1 1 1 0 0
1 0 0 1 1

]
. (13)

A similar model to this model was proposed in [10] for
drum source separation in polyphonic music signals. In that
model, the spectral templates are coupled between a poly-
phonic audio recording and a collection of drum recordings
in order to obtain better drum separation performance.

3.2. Model II

In our second model, we hierarchically factorize the excita-
tion matrix E as multiplication of a chord dictionary matrix
B and its weights C as follows:

E(i, t) =
∑
k

B(i, k)Z(i, k)C(k, t). (14)

Here the basis matrix B encapsulates the harmonic structure
of the music and incorporates additional information to the
source separation system. The basic idea behind factorizing
the excitation matrix E is to capture the repeated harmonic
patterns in the music and form a harmonic basis for the musi-
cal piece.

After replacing E with the decomposed version, we get
the following model:

X̂1(f, t) =
∑
i,k

D(f, i)B(i, k)Z(i, k)C(k, t) (15)

X̂2(f,m) =
∑
i

D(f, i)F (i,m)T (i,m) (16)

X̂3(i, n) =
∑
k

B(i, k)Z(i, k)G(k, n)Y (k, n) (17)
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Fig. 2. General sketch of the second model. The idea is to incorporate spectral information from the recordings of the instru-
ments and harmonic information from an approximate score which is not necessarily aligned. The blocks visualize the tensors
and the arrows denote the relation between them. The lower-case letters and small arrows near the blocks represent the indices
of a particular tensor.

where X3 is a score matrix, which can be possibly obtained
from a MIDI file: X3(i, n) is set to a constant value if the ith

note is active at time frame n. X1 and X3 do not necessarily
belong to the same piece, however, in this study we select X3

as a transcription of X1.
Furthermore, Z and Y are 0 − 1 matrices that allow the

model to handle audio mixtures with multiple instruments.
Z(i, k) = 1 if ith note and kth chord template belong to the
same instrument. Similarly, Y (k, n) = 1 if the instrument
that kth chord template belongs to is active at time n. G
models the time varying amplitudes of the chord templates.
Figure 2 visualizes the general structure of the model. The
coupling matrix R for this model is defined as follows:

R =

 1 1 1 1 0 0 0 0
1 0 0 0 1 1 0 0
0 1 1 0 0 0 1 1

 . (18)

Note that similar models to this model were proposed in order
to solve audio restoration [4, 11] and polyphonic transcription
problems [12] where encouraging results were obtained.

4. RESULTS

In order to evaluate our models, we have conducted several
experiments. We have synthesized 3 piano and cello duets
by using RWC Musical Instrument Sound database [13] and
a simple concatenative synthesis algorithm and then we have
selected 3 excerpts of 45 seconds from random parts of each
piece yielding 9 test cases. In all our experiments the audio is
subdivided into frames of 186 milliseconds where the audio
spectrum is computed via Modified Discrete Cosine Trans-
form (MDCT).

Since our second model needs only an approximate tran-
scription, we also tested this model on different transcription

durations: we used the first 10, 30, and 45 seconds of the
transcriptions during the tests.

We have run the inference algorithms for 50−75 iterations
for both models and we have used 134 spectral templates that
correspond to 88 piano and 46 cello notes. We have also used
80 chord templates for the second model; 50 templates for pi-
ano and 30 templates for cello. The factors B, C, D, E, F ,
and G are initialized randomly and updated during the esti-
mation process. The other factors are clamped to their initial
values.

In order to measure the performance of our models, we
compute the signal to interference ratio (SIR), signal to arti-
fact ratio (SAR), and signal to distortion ratio (SDR) by using
the BSSEVAL toolbox (v3.0) [14]. The evaluation results are
given in Table 2. It can be observed that, despite the first
model uses the temporally aligned transcription, the second
model yields a similar performance and it even performs bet-
ter than the first model for all metrics when KL divergence
is chosen. We can also observe that increasing the duration
of the transcription that is used in the second model improves
the performance of the system which validates the idea behind
the model. Some audio examples can be found in http://
www.cmpe.boun.edu.tr/˜umut/eusipco2012/.

5. CONCLUSION

In this study, two NMF-based models for musical source
separation are presented. The first model uses a temporally
aligned MIDI file and incorporates spectral information by
using isolated note recordings. As opposed to the first model,
the second model incorporates harmonic information by us-
ing an approximate and not necessarily aligned MIDI file.
The GCTF framework enables these models to be defined in
a compact notation. Besides, once the models are defined in
this framework, the inference algorithm is readily available.
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Experiments show that instead of using a temporally aligned
transcription, we can achieve competitive and sometimes
even better results by using an approximate transcription.
This suggests that assuming a perfectly aligned score to the
music is over-constraining the model and by relaxing this as-
sumption we may get better separation results. We conclude
by mentioning that the signal model can be enhanced by us-
ing convolutive structures and the computation time can be
reduced by using parallel matrix computations. Both topics
are subject to further research.
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