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ABSTRACT

It is the purpose of the paper to stimulate a systematic
investigation of the time-frequency methods used to ex-
tract the natural frequency of mechanical structures. In
particular, we are interested in cantilever beams, which
are simple structures in mechanics, and therefore most
appropriate for detailed comparison. We will compare
the refined time-frequency spectra for the short-time
Fourier transform, for the Wigner transform and for the
non-stationary Gabor transform and extract a set of nat-
ural frequencies from the accelerometer data placed at
the free end of a cantilever beam.

Index Terms— short-time Fourier transform, non-
stationary Gabor transform, Wigner–Ville, Lasso, re-
assignment, natural frequency identification.

1. INTRODUCTION

Time-frequency methods are applied to mechanical
structures analysis for investigating functional param-
eters that are evolving in time like structural damages,
cracks or deformations ([6, 3, 4]). Their usefulness con-
sists mainly in the fact that they are non-invasive tech-
niques but they have the disadvantage of imprecision
in frequency. It is the purpose of this paper to provide
a method for improving the frequency identification by
several post-processing operations like re-assignment
([1]) and LASSO ([8]). We will compare two clas-
sical time-frequency methods, namely the short-time
Fourier transform (STFT) as linear transform and the
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Wigner-Ville transform (WV) as quadratic transform
with a novel time-frequency representation namely non-
stationary Gabor transform as adaptive transform (CQ)
([9]). The methodology of work constitutes the plan of
the paper. We start by placing an accelerometer at the
free end of a cantilever beam. Then the data is recorded
using a Matlab interface to the sensor. We compute the
spectra for the three time-frequency transforms STFT,
WV and CQ. Then we post-process the time-frequency
spectra using the LASSO and the re-assignment method.
Finally, we perform the identification of the natural fre-
quencies using a peak-picking technique and the com-
parison of the results is realized.

Due to its simplicity we will use a steel cantilever
beam having the following geometrical characteris-
tics: length l = 1000mm, wide b = 50mm, height
h = 5mm and consequently, for the undamaged state
the cross-section A = 250 · 10−6m2, moment of inertia
I = 520.833 · 10−12m4. The mechanical characteristics
of the beam are mass density ρ = 7850kg/m3, Young’s
modulus E = 2.0 · 1011N/m2 Poissons ratio µ = 0.3.

This beam is considered as a reference, for beams
with other dimensions (l, b, h) or mechanical character-
istics (ρ,E, µ), the problem can be solved by consid-
ering the scale influence. For recording the signal, we
place an accelerometer on the free end of the unloaded
beam.

We start by recalling the definition of the Fourier
transform for functions on Rd using an integral trans-
form. It is useful to assume that f ∈ L1(Rd), i.e. that f
belongs to the space of Lebesgue integrable functions in
the technical sense of being measurable and absolutely
integrable. We prefer the normalization with the factor
2π in the exponent, because then the “pure frequency”
t 7→ e10πit has exactly 5 = 10/2 full oscillations over
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any interval of length 1 while one would have to think
in terms of multiples of a basic period of 2π in case of a
normalization of pure frequencies of the form t 7→ eit).

f̂(ω) =

∫
Rd
f(t) · e−2πiω·t dt (1)

The inverse Fourier transform then has the form

f(t) =

∫
Rd
f̂(ω) · e2πit·ω dω, (2)

Strictly speaking this inversion formula only makes
sense under the additional hypothesis that f̂ ∈ L1(Rd),
which is not satifsied for arbitrary functions f ∈ L1(Rd).
In the general case (f ∈ L1(Rd)) one can obtain f from
f̂ using classical summability methods, convergent in
the L1-norm.

One often speaks of Fourier analysis being the first
step, telling us how much energy of f is concentrated at
a given frequency ω (or more specifically |f̂(ω)|2), and
the Fourier inversion as a method to build f from the
pure frequencies also call Fourier synthesis.

2. TIME-FREQUENCY SPECTROGRAMS

We introduce in this section the main tools for time-
frequency analysis, namely the STFT, WV and CQ.

The Short-Time Fourier Transform (STFT) of a
function f ∈ L2(Rd) with respect to a window g ∈
L2(Rd) is defined as

Vgf(x, ω) =

∫
Rd
f(t)g(t− x)e−2πit·ωdt

for z = (x, ω) ∈ R2d.
The Wigner transform is by definition:

Wf(x, ω) =

∫
Rd
e−2πiω·tf(x+ 1

2 t)f(x− 1
2 t)dt. (3)

The definition of the cross-Wigner transform of a
pair of square-integrable functions is similar to that of
the Wigner transform (3)

W (f, g)(x, ω) =

∫
Rd
e−2πiω·tf(x+ 1

2 t)g(x− 1
2 t)dt

and reduces to the latter when f = g.
We observe, however, that the cross-Wigner trans-

form W (f, g) and the STFT are related by the simple
formulas

W (f, g)(z) = 2de4πiω·xVg∨f(2z) (4)

where g∨(x) = g(−x) and

Vgf(z) = 2−de−i4πω·xW (f, g∨)(1
2z). (5)

For the practical implementation, these transforms
will be developed in a finite discrete setting using the
Hilbert space CL. We consider a signal f of length
L, with time-shifted window functions {ϕk}k and fre-
quency shift parameters {bk}k. Using these consider-
ations, the direct discrete versions of the STFT and of
the Wigner transform can be immediately obtained. We
will introduce now, a variation of the STFT called the
non-stationary Gabor transform.

The finite, discrete non-stationary Gabor transform
(CQ) is given by:

cn,k =

L−1∑
j=0

f [j]ϕk[j]e
2πinbkj

L . (6)

This transform allows for windows to vary over time
compared to the fixed resolution of the STFT. Therefore,
it generates dynamic time-adaptive transforms that are
still Fast Fourier transform (FFT)-based for fast imple-
mentation.

The (frequency-side) finite, discrete non-stationary
Gabor transform (CQ) is given by:

cn,k =

L−1∑
j=0

f̂ [j]ϕ̂k[j]e
2πinakj

L =

L−1∑
l=0

f [l]ϕk[l − nak].

(7)
In this case the windows vary over the frequency do-

main and generate frequency-adaptive transform design
like wavelet transforms or nonuniform LTI filterbanks.
The fast implementation requires a full FFT of f .

The comparison of our methods will include the
linear frequency spacing over a fixed time-frequency
resolution versus geometric frequency spacing. In fig-
ure (1) we present the spectrograms for the three time-
frequency representations.

3. REFINEMENT OF THE SPECTROGRAMS

The Wigner-Ville distribution possesses a high resolu-
tion in the time-frequency plane, and satisfies a large
number of desirable properties, but its use in practical
application is limited by the presence of non-negligible
cross-terms, resulting from interaction between signal
components.

810



Fig. 1. STFT, WV, CQ.

We present in the following the re-assignment
method that we have used to improve the time-frequency
readability in the classical setting of the WV spectrum.

The expression of the WV spectrum shows that the
value of a time-frequency representation at any point
(t, ω) of the time-frequency plane can be considered as
the contributions of the weighted Wigner-Ville distribu-
tion values at the neighboring points (t−u, ω−Ω). The
transform average the signal energy in a domain cen-
tered on (t, ω) and delimited by the essential support of
g = φTF (u,Ω). This averaging leads to the attenuation
of the oscillating cross-terms, but also to a signal com-
ponent broadening. Therefore, one way to avoid this is
to change the attribution point of this average, and to
assign it to the center of gravity of these energy contri-
butions, whose coordinates are:

t̂(x; t, ω) = t−

−
∫ ∫

u · φTF (u,Ω)WV (x; t− u, ω − Ω)dudΩ
2π∫ ∫

φTF (u,Ω)WV (x; t− u, ω − Ω)dudΩ
2π

ω̂(x; t, ω) = ω −

−
∫ ∫

Ω · φTF (u,Ω)WV (x; t− u, ω − Ω)dudΩ
2π∫ ∫

φTF (u,Ω)WV (x; t− u, ω − Ω)dudΩ
2π

rather than to the point (t, ω) where it is computed.
This reassignment leads to the construction of a modi-
fied version of the time frequency representation, whose
values at any point (t′, ω′) is therefore the sum of all the
representation values moved to the point:

MTFR(x; t′, ω′) =

∫ ∫
TFR(x; t, ω)δ(t′ − t̂(x; t, ω)) ·

·δ(ω′ − ω̂(x; t, ω))dt
dω

2π

where δ(t) denotes the Dirac impulse.
In figure (2) we present the spectrograms for the

three time-frequency representations after re-assignment.

Fig. 2. STFT, WV, CQ after re-assignment

The second method we have used for comparison
has its origins in the classical task of denoising. Ef-
ficient noise reduction methods can be obtained using
thresholding strategies. Coefficient thresholding has in-
troduced itself naturally into the context of variational
formulations of denoising. The ’lasso’ technique, or
’least absolute shrinkage and selection operator’ was
originally introduced by R. Tibshirani as a solution to
the standard regression problem is applicable in the de-
noising of spectra ([8]). The lasso was defined in the
following manner:

Suppose that we have the data (xi, yi), i = 1, 2, ..., N ,
where xi = (xi1, ..., xip)

T are the predictor variables
and yi are the responses. As in the usual regression
set-up, we assume either that the observations are in-
dependent or that the yis are conditionally independent
given the xijs. We assume that the xij are standard-
ized so that

∑
i xij/N = 0,

∑
i x

2
ij/N = 1. Letting

B̂ = (B̂1, ..., B̂p)
T , the lasso estimate α̂, B̂ is defined

by

(α̂, B̂) = argmin


N∑
i=1

yi − α−∑
j

Bjxij

2

811



subject to ∑
j

|Bj | ≤ t. (8)

Computation of the solution of this equation is a
quadratic programming problem with linear inequality
constraints.

In the context of spectra denoising, the lasso method
leads to the following result:

Given an orthonormal basis φk, the variational de-
noising problem:

min
α

[
1

2
‖x−

∑
k

αkφk‖22 + λ‖α‖1

]
(9)

is solved by αk = Sλ〈x, φk〉. This is not true any-
more when φk is a more general frame, but dedicated
iterative algorithms (based upon soft thresholding) can
yield the solution.

In figure (3) we present the spectrograms for the
three time-frequency representations after applying the
LASSO method.

Fig. 3. STFT, WV, CQ after LASSO

4. NATURAL FREQUENCIES IDENTIFICATION
METHOD

The following methods used for determining the natu-
ral frequencies of a signal makes use of the three time-
frequency representation methods presented.

At first glance both the WV and the STFT offer the
same advantage in frequency resolution. In principle,
the CQ can have a similar resolution with the appropri-
ate choice of bins per octave, but that is at the expense of

some of its desirable properties such as emphasis on spe-
cific frequency ranges. The advantage of the WV over
the other two methods is the fact that the signal is corre-
lated with itself thus giving the most accurate localiza-
tion of the natural frequencies. This is also a drawback
since it causes many prominent cross-terms to appear.
In order to determine the relevant frequencies from the
WV, the method presented here uses prior knowledge
from the STFT and CQ. This can be done in two differ-
ent ways:

The first approach determines the frequencies that
are most significant in the STFT and CQ and determines
a range in which all the natural frequencies may lie.
This range is comprised of the frequency bins with the
largest contribution and their closest neighbors (within a
distance that is variable depending on the bin value). By
searching for high contributions in the WV only within
this pre-determined range, we exclude the possibility
of reading cross-terms of any intensity. This approach
is heavily dependent on the choice of the neighbor-
hoods around the key frequency bins determined in the
STFT/CQ. Also, small correlation effects might appear
in the STFT between the signal and the window func-
tion. Although unlikely, this might lead to an unwanted
extension of the range in which the WV is investigated
and to inconclusive results.

The second approach is a progressive refinement of
the search range going through all the three representa-
tion methods, starting with the CQ. First an appropriate
choice of window functions must be made so that only
natural frequencies are detected, even with an imprecise
resolution. The CQ is ideal for this because of the ad-
vantage of allocating a variable number of bins to each
octave. Having determined this initial set of peak fre-
quencies, the STFT is investigated in the areas of inter-
est and a further refinement is made. This intermediate
step is necessary in order to approach the natural fre-
quencies and account for the change in window length.
Equivalently, this could be done by taking an STFT with
variable windows, but using both the CQ and the STFT
ensures a smooth transition. The final step is identify-
ing the peak frequencies in the WV that lie within the
refined area of interest.

One should note that in the end, both approach-
esyield the same results in the optimal case, but the
second algorithm minimizes the risk of having too wide
of a search range in the WV. Both paths use the high
resolution and accuracy of the WV representation to
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Standard Re-assigned Lasso
5.12 * 4.27
23.55 * 21.32
62.47 66.7 59.65
136.19 143.36 137.34
232.45 235.53 257.34
352.26 322.56 337.43
485.39 481.28 485.01
650.25 645.13 646.25
826.4 824.33 811.28
1035.4 1034.1 1057.82

Table 1. Comparison of the first 10 natural frequencies,
for the non-refined case, the re-assigned case and the
LASSO. We marked with * the values that are not read-
able

determine peak frequencies within a certain range and
they employ the CQ transform and the STFT in order
to determine where the natural frequencies lie up to a
certain degree of precision. This algorithm makes use
of the advantages of the three spectral representation
methods, while avoiding each of their drawbacks, so
that in the end, it reaches better results than any of the
three methods individually.

The set of natural frequencies analytically computed
from the equation of the beam correponding to the first
ten frequencies modes are fi = (4.076, 22.549, 60.539,
138.188, 241.741, 337.182, 485.510, 646.721, 816.832,
1042.824). In table 1, we gather the results of the
comparison for the values obtained using the proposed
method.

5. CONCLUSIONS

We provide in this paper a method to improve the nat-
ural frequencies readability using complementary infor-
mation extracted from the spectra of the STFT, WV and
CQ. The results show that we are able to improve the
accuracy of natural frequencies identification using our
method. The re-assignment although it gives a bad vi-
sual impression allows for good identification but the
LASSO thresholding pre-processed with the proposed
method is the most accurate. One can use this approach
when the analytic equation is not available like in the
case of damaged structures.
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