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ABSTRACT

In real world speech processing, the signals are often con-

tinuous and consist of momentary segments of speech over

non-stationary background noise. It has been demonstrated

that spectral factorisation using multi-frame atoms can be suc-

cessfully employed to separate and recognise speech in ad-

verse conditions. While in previous work full knowledge of

utterance endpointing and speaker identity was used for noise

modelling and speech recognition, this study proposes spec-

tral factorisation and sparse classification techniques to de-

tect, identify, separate and recognise speech from a continu-

ous noisy input. Speech models are trained beforehand, but

noise models are acquired adaptively from the input by us-

ing voice activity detection without prior knowledge of noise-

only locations. The results are evaluated on the CHiME cor-

pus, containing utterances from 34 speakers over highly non-

stationary multi-source noise.

Index Terms— Spectral factorization, speech recogni-

tion, speaker recognition, voice activity detection, speech

separation

1. INTRODUCTION

Applying automatic speech recognition (ASR) in noisy en-

vironments introduces several new challenges not present in

clean conditions. A fundamental problem is corruption of

speech features by additive noise, which may not match to

noise observed during model training. In previous work, high

separation quality has been achieved by applying spectral fac-

torisation that decomposes a noisy input spectrogram into ac-

tivations of multi-frame speech and noise atoms, which can

be acquired from training material or from the local context

[1, 2, 3, 4]. We have shown that a method known as sparse

classification (SC), which determines the phonetic content di-

rectly from the weights of activated speech atoms, can pro-

duce speech recognition results comparable to source separa-

tion followed by conventional back-end recognition [1, 5].

In previous experiments with noise atoms sampled from

the neighbourhood of noisy utterances, we have used anno-

tated speech endpointing to sample from segments known to
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consist of only noise. In real world applications, such infor-

mation cannot be assumed to be available, thus speech activ-

ity must be estimated. In other speech recognition methods,

voice activity detection (VAD) has been employed to detect

speech and noise segments and to update the noise model [6].

In this work, we propose the use of SC-based methods for

detecting the target utterances from mixtures containing high

noise levels and occasionally overlapping non-target speech.

The same framework is used for noise model updating and

subsequent source separation. Speech models are acquired

beforehand from training material, whereas noise models are

adapted from the context.

Another topic of interest is the use of speaker-dependent

speech recognition to obtain better results in both clean and

noisy environments. However, the true speaker identity may

not be known during recognition. We propose SC for deter-

mining the speaker identity from continuous noisy mixtures,

whereafter source separation and speech recognition is car-

ried out with speaker-dependent speech models.

The work is organised as follows: Section 2 introduces the

main concepts of factorisation-based speech separation and

recognition. In Section 3 we present the framework for pro-

cessing continuous audio, detecting speech locations, and up-

dating the noise model. In Section 4 we apply the algorithms

to CHiME data, consisting of utterances from 34 speakers

over continuous, highly non-stationary background noise. Fi-

nally, in Section 5 we draw the conclusions.

2. FACTORISATION-BASED SPEECH SEPARATION

AND RECOGNITION

The methods presented here are based on representing an ob-

served sound mixture as a linear sum of speech and noise

atoms, each belonging to a single speaker or to background

noise. The features consist of Mel scale spectral magnitudes,

computed in 25 ms frames with a 10 ms shift. The atoms

are B × T spectrogram segments, where B is the number of
Mel bands and T is the number of consecutive frames in an
atom. Speech and noise atoms form a dictionary (or basis).

By assuming that magnitudes of multiple sources are approx-

imately additive in the Mel-spectral domain, factorisation be-

comes a problem of finding non-negative activation weights

xl for each atom index l ∈ [1, L] in the system, together de-
noted as an activation vector x.
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2.1. Convolutive spectral factorisation

An observation spectrogramY (B×F ), where the number of
frames F is larger than atom duration T , is factorised using
convolutive temporal modelling and joint spectrogram esti-

mation with overlapping segments [7]. We find the L × W
activation matrix X, consisting of an activation vector for all

W window indices in the observation. We only consider win-
dows fitting completely within the observation spectrogram.

Thereby the activations of the final window index W takes

place at time F − T + 1. X is obtained by optimising the es-
timated observation spectrogram Ψ, modelled convolutively

as

Ψ =

T∑

t=1

At

→(t−1)

X . (1)

Each At (t ∈ [1, T ]) is a B × L matrix, containing frame t
of every B × T atom in the dictionary. Operator→ shifts the
columns of X right within a L × F zero-padded matrix by
t − 1 columns. The cost function to be minimised consists
of Kullback-Leibler divergence between Y and Ψ, and the

sum ofX entries weighted element-wise by a sparsity penalty

matrix. The exact cost functions and iterative update rules

used in our convolutive factorisation are described in [2, 5].

2.2. Source separation and sparse classification

The activation matrix can be used for source separation. Two

spectrogram estimates are derived from Equation 1; a noisy

speech reconstruction Ψ obtained by using both speech and

noise atoms, and a clean speech estimate Ψs obtained by

only using speech atoms and activations. The element-wise

speech-to-total ratio Ψs/Ψ is converted back to discrete

Fourier frequency scale by multiplication from the left by

a pseudoinverse of the Mel filterbank matrix, and acts as a

time-varying filter for the original mixture spectrogram. It

is then used to estimate speech-only features and further to

synthesise separated time-domain signals [5].

To determine the speaker identity and phonetic content

from speech atom activations, each speaker-dependent speech

atom is associated with a Q × T label matrix B. It repre-

sents the presence of each phonetic state q ∈ [1, Q] over the
atom’s frame indices [1, 5]. These atom-state labels are used

to calculate a Q× F likelihood matrix, representing phonetic
state likelihoods over the whole duration of the observation.

The likelihood matrix is calculated by applying Equation 1,

with state label matrices B taking the place of the atom spec-

trograms. The method is known as sparse classification. In

previous work we have used it for speech decoding [1, 2, 5].

Here the state likelihood information is used for voice activity

detection and speaker identification.

3. PROPOSED SYSTEM FOR PROCESSING

CONTINUOUS AUDIO

In the proposed system, continuous input audio is processed

gradually using convolutive spectral factorisation, a fixed

multi-speaker speech basis obtained in the training stage,

and an adaptively updated noise basis. As the factorisation

advances within the signal, speech activation weights and

state mapping matrices are used to construct estimates of the

presence of phonetic states for each speaker individually. The

speaker-dependent state information is used for two purposes,

speech locating and speaker identification.

3.1. Voice activity detection

We perform initial factorisation in 750-frame (7.5 s) spectro-

gram blocks. An extended Hann window function, consist-

ing of 250 frames of fade-in, 250 frames of flat top and 250

frames of fade-out is applied to each block spectrogram. 2/3

overlap is present between blocks, so that each frame of the

input is included in exactly one flat middle section. Blocks

are factorised consecutively using the convolutive model de-

scribed in Section 2.1 with a multi-speaker speech basis (Sec-

tion 4.2) and an adaptive noise basis (Section 3.2).

Speech activations are converted into phonetic state like-

lihoods by using mapping matricesB and overlap-added over

blocks. Using the initial state likelihood estimates and word-

dependent VAD weight functions over time, a total VAD level

estimate is derived for each input frame. Each word is as-

signed a specific weight profile over time, spanning up to 30

frames to both directions from the original frame location for

temporal smoothing and utterance modelling. Based on the

task grammar, the shape of weight functions depends on the

role of each word in a sentence: the functions correspond-

ing to the first and last word classes in a sentence are given

negative weight before and after them, respectively. This em-

phasises the contrast in VAD level between target speech and

its surroundings, helping to isolate test utterances from noise

and non-test speech. An example of weight functions that

were used in the simulations is shown in Figure 1. Word ac-

tivity sums are convolved with their respective weight func-

tions, and then summed together for the total VAD weight.

Speech-noise classification is performed using the total

VAD weight over frames and on/off threshold values deter-

mined from development data. In addition, constraints can be

set on the utterance duration to select candidates matching to

the expected temporal profile of utterances.

3.2. Noise basis acquisition

Areas flagged as noise are sampled directly into noise atoms

with a T/2 overlap between consecutive atoms. A thresh-
old value is used on the spectrogram magnitude sum of seg-

ments to only store atoms with significant noise events. A

noise dictionary is maintained, starting empty and acquiring

new content up to a defined maximum capacity. Each noise

dictionary atom is given a significance weight, increasing ac-

cording to its activation weight in factorisation and decaying

exponentially over time. Whenever newly introduced noise

atoms would exceed the dictionary size, the least significant

existing atoms are discarded. The latest dictionary is always

used for factorisation.
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Fig. 1. VAD weight functions for each CHiME word class.

3.3. Speaker recognition

As we use a multi-speaker basis with knowledge of the

speaker identity of each speech atom, a likelihood matrix

can be generated for each speaker individually. For a span

of frames marked as speech, we find the maximum sum of

speaker-dependent state content to identify the most likely

speaker. The identification result, in turn, is used for another,

local factorisation pass so that only the chosen speaker’s

speech basis is included. By narrowing down the speech ba-

sis, the system becomes more sensitive to the chosen identity

and may be able to pick the correct phonetic content even

from mixtures containing other speakers. In separation-based

speech recognition, the identity estimate is also used for se-

lecting the speaker-dependent GMM model in the back-end.

4. EXPERIMENTS

4.1. CHiME data

The experiments were conducted on CHiME data, consist-

ing of GRID command utterances mixed over highly non-

stationary family household noises with simulated room re-

verberation response matching the noise [8]. The target utter-

ances are from 34 different speakers and follow a linear six-

class verb-colour-preposition-letter-digit-coda grammar (“set

white in H 7 please”). A default language model is pro-

vided for recognition, employing 250 sub-word states for the

51-word vocabulary. For each speaker, there are 500 train-

ing utterances with reverberation but no additive noise. De-

velopment and test sets consist of a total of 600 utterances

from all speakers together, repeated at multiple SNR levels.

The noises contain a large variety of everyday sound events

including appliances, impacts, music and also spontaneous

speech from non-target speakers.

For this work, we use the continuous, ‘embedded’ CHiME

sequences. In the test set, there are 16 sessions ranging from

27 to 87 minutes. The 600 test utterances are spread over the

sessions at SNRs ranging from +18 to -6 dB at 3 dB intervals.

SNRs from +9 to -6 dB belong to the official scoring set. The

locations of speech in sessions are chosen in such a way that

the target SNR is achieved by direct mixing without scaling.

Therefore it is common for one loud segment of background

noise to contain several low-SNR test utterances in succes-

sion. Conversely, there are also long noise-only sequences

between the test utterances.

All 16 kHz CHiME audio was converted into B = 40
band Mel-scale magnitude spectrograms with 25 ms frame

length and 10 ms frame shift, and equalised using a frequency

band weighting curve derived from speech training material.

For spectral processing, the magnitudes of left and right chan-

nels were averaged to form monaural spectrogram features.

4.2. Bases and labelling

A speech basis was created for every speaker by employing

forced alignment data acquired from the CHiME HTK mod-

els. Based on the 250 sub-word phonetic states, each state

in turn was modelled by placing its corresponding word in-

stances from 300 training utterances in a B × T spectro-
gram window with the target state in the middle [5]. A me-

dian was taken over the instances within each time-frequency

point, creating a characteristic template of the state spectrum

and its typical neighbourhood. Atom length T was set to 25
(265 ms), which is enough to capture short words in their en-

tirety, and partial content of longer words, together modelling

slight variations in the pace of pronunciation. All in all, the

250 atoms of 34 speakers formed a 8500-atom speech basis.

The remaining 200 training utterances from all speakers were

combined and factorised using the full speech basis to learn

the activation-state mapping matrices B with ordinary least

squares regression as described in [2, 5].

An adaptive noise basis was maintained as described in

Section 3.2. We used a maximum capacity of 500 atoms for

sampled noise. In addition, 15 atoms were initialised ran-

domly and updated during iteration to model unseen noise

events, e.g. when the adaptive basis was empty [5]. The max-

imum number of atoms used in block factorisation was 9015

(8500 speech, 500 sampled noise, 15 on-line updated noise).

4.3. VAD accuracy

The VAD algorithm described in Section 3.1 was used to find

utterances from CHiME sessions. A VAD weight function

was given for each word class in CHiME grammar to reflect

the expected speech activity profile in its neighbourhood. The

functions are shown in Figure 1. On/off thresholds for total

VAD level were acquired from development data and set to

favour false positives over missed true utterances. To reflect

the duration of CHiME utterances, a minimum length require-

ment of 80 frames was set for speech segments, and after 180

frames from the start of a segment it was ended as soon as

the silence threshold was reached. Between these limits, tem-

porary gaps of up to 60 frames were allowed to model short

pauses in speech. Because the CHiME ground truth anno-

tations occasionally contain excess silence, an utterance was

ruled as being found in a segment for scoring if at least 40%

of its duration was flagged as speech by VAD.

Speech detection results are listed in Table 1. Of the 5400

test utterances (600 for each SNR level), 5331 (98.7%) were

detected successfully. 5090 were also assigned correctly to

single segments, whereas 241 appeared in segments where
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Table 1. Voice activity detection results: 600 utterances at 9

SNR levels, all in all 5400 utterances, exist within the contin-

uous test sessions. 5939 speech segments were detected.

Found speech segments True utterances

726 false positives 65 false negatives (misses)

5090 containing 1 utterance 5331 found in 1 segment

120 containing 2 utterances 4 split between 2 segments

3 containing 3 utterances

Total: 5939 Total: 5400

two or more consecutive utterances got merged. In a few

cases, an utterance was split between two found segments.

726 false positives — segments with no target utterances —

were also found. These mostly consisted of other speech

found in CHiME background noise.

In a completely realistic scenario, the detected speech seg-

ments should be identified and recognised by themselves. In

these experiments we used found segments for VAD qual-

ity evaluation and noise modelling, but annotated endpointing

for speaker identification and speech recognition. The reason

for this choice is that the default CHiME language model as-

sumes tightly cropped, single utterances as its input. Passing

VAD-based segments with possible silence and merged utter-

ances would result in unpredictable back-end behaviour and

problems in comparing the scores with prior ASR methods.

4.4. Speaker identification

The results for speaker identification are listed by SNR in Ta-

ble 2. The identification rates of 12–18 dB utterances were

between 99–100%. We notice that above 0 dB, misclassifica-

tions are rare. From 0 dB downwards, the utterances may —

and often do — contain equally loud speech from non-target

speakers, which may cause the maximum activity classifier to

select an identity matching to the non-target speech instead of

the true speaker. Misclassification of target speech to another

similar sounding speaker may also take place due to corrup-

tion of spectral features. For enhancement and sparse classifi-

cation, the latter kind of errors are still tolerable, whereas the

former are often unrecoverable.

4.5. Speech separation and recognition

Enhanced utterances were cropped from the full session sig-

nals separated during multi-speaker block processing. Real

utterance locations were also re-factorised using a single-

speaker basis of both true and estimated speaker identity in

turn. The latest sampled noise basis and ⌈F/T ⌉ on-line up-
dated noise atoms were used in the second, local factorisation

pass. Enhanced test signals, generated as described in Sec-

tion 2.2, were stored for GMM-based speech recognition and

measurement of signal-to-distortion ratio (SDR) of enhanced

utterances in comparison to clean test files.

For enhancement-based recognition, we used the CHiME

Table 2. Speaker identification scores (%) on the CHiME

test set over SNRs. SC-based maximum state sum is used to

determine the most likely identity among 34 speakers.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

Correct 99.2 98.7 97.2 91.3 85.0 74.5 91.0

language model and multi-condition (MC) trained speaker-

dependent GMMs as in [3, 5]. Models were not retrained for

enhanced signals. SDR was calculated as

SDRdB = 10 log10

∑
n

s(n)2∑
n

(ŝ(n) − s(n))2
, (2)

where s(n) is the clean reference signal and ŝ(n) is the noisy
or enhanced signal over sample index n [9]. Because CHiME
annotations do not match perfectly to the isolated files, signals

were aligned with maximum cross-correlation before mea-

surement. Both in recognition and SDR measurement, left

and right channels were averaged to form monaural signals.

Results for speech recognition are shown in Table 3. The

first half displays baseline scores for the clean-trained CHiME

reference models, the MC-trained models without any en-

hancement, and our previous results using a 250-atom sam-

pled noise dictionary exploiting full knowledge of noise-only

segments and the same speech bases as in this work [5]. In the

second half, recognition results are shown for the new VAD-

based noise modelling. Four different combinations are used

for the choice of speech dictionaries in factorisation and for

speaker-dependent GMM models used in the back-end.

The scores generally decrease as endpointing and identity

information is lost, but even in the worst case where estimated

identity is used for all parts, the new results surpass unen-

hanced, known-identity recognition by a wide margin. Inter-

estingly, enhancement using all speakers’ bases is on average

better than only using the true identity. One possible explana-

tion is that using all bases simultaneously allows wider pho-

netic variation, even though not all atoms belong to the target

speaker. The degradation from losing identity information in

separation and GMM selection reflects the misclassification

rates over SNRs seen in Table 2. The largest decrements take

place in the noisy end, but overall only 2.6% (absolute) loss

is observed in average accuracy when true identity is wholly

replaced by an estimate.

Results for SDR measurement are shown in Table 4. The

first rows show SDRs for unenhanced utterances and enhance-

ment with the earlier 250-atom informed noise modelling.

Note that the nominal CHiME SNRs do not match the mea-

sured, unenhanced SDRs due to different weighting. In the

second part, results for the new, self-adapting noise model are

shown. Curiously, our new model produces superior separa-

tion quality, which does not translate to better ASR rates. We

can speculate that the proposed noise model with long mem-

ory and adaptive atoms is able to remove more major noise

events than the strictly local, informed model. Meanwhile,

it may also remove crucial speech information, thus reducing
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Table 3. Enhancement-based speech recognition scores (%)

on the CHiME test set over different SNRs. First part shows

unenhanced baseline scores for standard CHiME models and

multi-condition (MC) trained models, and the latter with in-

formed 250-atom noise modelling. The second part uses

new, self-adapting noise models. Row labels denote the

speech bases used for enhancement (all/true/estimated), and

the speaker model used for GMM evaluation (true/estimated).

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

Baseline scores and informed noise modelling

CHiME 82.4 75.0 62.9 49.5 35.4 30.3 55.9

MC, none 91.3 86.8 81.7 72.8 61.1 54.5 74.7

MC, inform. 93.0 91.2 90.0 85.2 79.0 72.9 85.2

Self-adapting noise, enhancement + MC recognition

All/true 92.8 89.8 87.8 84.4 75.5 73.9 84.1

True/true 91.6 88.8 88.2 83.9 76.9 68.9 83.0

Est./true 91.4 88.8 87.8 82.6 73.8 64.4 81.5

Est./est. 91.4 88.6 87.1 81.0 72.3 62.2 80.4

the final ASR rate. Another noteworthy observation is that the

compact single-speaker speech models introduce more distor-

tions in the clean end than using all speakers’ bases, but in the

noisy end they manage to separate target speech better.

5. CONCLUSIONS

Spectral factorisation based methods were presented for solv-

ing three problems; voice activity detection, speaker identifi-

cation, and speech separation/recognition from a continuous

input. Results were evaluated using CHiME data, containing

34 speakers and household noise at SNRs from 9 to -6 dB.

98.7% of target utterances were found by estimating voice

activity from speech atom activations and state labels. False

positives generally consisted of non-target speech present in

CHiME noise. Non-speech segments were used to update the

noise model in continuous factorisation, thereby making the

model completely independent of noise training data.

Activation weights of a multi-speaker basis were used to

determine speaker identity among the 34 candidates. An aver-

age identification rate of 91.0% was achieved over all SNRs.

Thereafter utterances were separated for GMM-based speech

recognition. The new, self-adapting noise model yielded

higher signal-to-distortion ratios than earlier, informed noise

modelling. However, speech recognition rates decreased

slightly when speaker identity was estimated. Approximately

80% average scores were still achieved after bypassing all

information on speaker identity and noise locations.

The results as a whole demonstrate, how spectrogram fac-

torisation and sparse classification can be used for several

subtasks in noise-robust speech separation and recognition.

We eventually hope to extend the presented work into a com-

plete large vocabulary continuous speech recognition frame-

work based on SC techniques.

Table 4. Measured signal-to-distortion ratios (dB) for unen-

hanced and enhanced CHiME test utterances over nominal

mixing SNRs.

SNR 9 dB 6 dB 3 dB 0 dB -3 dB -6 dB avg

Unenhanced signals and informed noise modelling

Unenhanced 3.7 2.5 0.3 -1.9 -4.8 -7.0 -1.2

Informed 4.4 4.1 3.8 3.5 3.1 2.7 3.6

Self-adapting noise, all/true/estimated identity

All 8.6 7.8 6.8 5.9 4.7 3.9 6.3

True 6.9 6.4 6.0 5.5 4.9 4.4 5.7

Estimated 6.9 6.4 6.0 5.4 4.6 4.0 5.6
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