
ADAPTIVE IIR NOTCH FILTERS FOR TRACKING OF QUASI-HARMONIC SIGNALS

Alexandre Leizor Szczupak? and Luiz Wagner Pereira Biscainho?†

LPS/PEE/COPPE?, DEL/POLI†, Universidade Federal do Rio de Janeiro
{aleizor,wagner}@lps.ufrj.br

ABSTRACT

In this paper, a new procedure for the design of a cascade
of IIR Adaptive Notch Filters (ANFs) is presented. The cas-
cade is composed by second-order sections of modified Neho-
rai Constrained ANFs, with coefficients modeled by a single
polynomial of arbitrary order. This approach allows for a de-
sign with less parameters to control notch positions than the
number of cascaded sections. The resulting structure is par-
ticularly suitable for tracking components of quasi-harmonic
signals. An example shows that the coefficient modeling can
tackle the inherent inharmonicity of the notes emitted by a
string instrument. Finally, a complete adaptation algorithm
for the model parameters, derived from Nehorai’s ANF recur-
sive prediction error algorithm, is described.

Index Terms— adaptive notch filter, inharmonicity, IIR

1. INTRODUCTION

Adaptive Notch Filters (ANFs) are commonly used for track-
ing partial components of harmonic and quasi-harmonic sig-
nals [1, 2], and the Nehorai structure [3], implemented as a
cascade of second-order ANF sections, has been successfully
applied to track partials of time-varying signals [4, 5]. Each
Nehorai ANF section establishes a notch between 0 and π ra-
dians using, besides a parameter to control the notch width, a
single coefficient to control the notch position.

We propose to model the set of notch coefficients of a
cascade of second-order Nehorai ANF sections by a polyno-
mial in m, which indexes the notch frequencies in ascending
order. This approach allows the number of parameters that
control notch positions to be inferior to the number of cas-
caded sections. The resulting structure is suitable for tracking
the instantaneous frequencies of partials from quasi-harmonic
signals, like that of most musical instruments.

This paper is organized as follows: in Section 2, we
briefly describe the Nehorai ANF as a cascade of second-
order notch filters and propose a model for their coefficients;
in the same section, we show how to relate this model to the
partials in string instrument notes; in Section 3 we derive a
Recursive Prediction Error algorithm (RPE), adapted from
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Nehorai’s ANF update algorithm [3] to adjust the model pa-
rameters; in the same section, we incorporate to the proposed
model auxiliary techniques in order to improve tracking with
IIR ANFs [4, 6]; in Section 4 we show computer simulations
over synthetic signals; in Section 5, we present conclusions
and plans for future work.

2. FILTER STRUCTURE

In a cascade of Nehorai’s second-order ANF sections, each
section produces a single notch that requires only one coeffi-
cient am to control its central attenuation frequency.

The overall structure can be described by

H(q−1) =

M∏
m=1

1 + amq
−1 + q−2

1 + ρamq−1 + ρ2q−2
, (1)

where ρ is the pole contraction factor (PCF) and q−1 is the
unitary delay operator. The value of each coefficient am is
related to its correspondent notch frequency ωm by

am = −2 cosωm. (2)

The PCF (0<ρ<1) controls the notches’ widths, which nar-
rows as ρ gets closer to 1. The PCF can be made adaptive and
unique to each section, enhancing the filter tracking capabili-
ties [6].

2.1. Proposed Model

By modeling the am coefficients as an N th-order polynomial
in m, it is possible to obtain an ANF cascade with less pa-
rameters to control the notch positions than the number M
of cascaded sections. Furthermore, the resulting filter main-
tains a structural relation between coefficients which favors
the tracking of quasi-harmonic partials.

The model can be expressed as

am =

N∑
n=1

αnm
n − 2. (3)

By combining Equation (2) and Equation (3) we obtain

α
N
mN + α

N−1
mN−1 + · · ·+ α

1
m− 2 = −2 cosωm. (4)
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A simple procedure for the algorithm initialization consists
in solving a linear (determined or over-determined) equation
system composed by (4) fed with a set of arbitrary m values.

As an example, Figure 1 displays the values of the notch
filter coefficients am computed for a harmonic series, and its
approximations obtained through a polynomial model of or-
der N=3 solved for m = {1, 8, 16}. Such particular choices
of m show that the model can yield a good approximation for
am over the spectrum.

Fig. 1. Coefficient values am correspondent to notches on the
harmonic series of 1 kHz (sampling frequency fs=44.1 kHz)
and an example of cubic approximation.

With this model, coefficient adaptation can be done over
the N parameters of the polynomial, instead of over the M
coefficients of the ANF cascade. The same N parameters
can be used, for example, to design a filter that attenuates
a sequence of partials p = {1, 2, ..., P} of a quasi-harmonic
string instrument signal, using N<P .

The Fletcher inharmonicity model for notes emitted by a
string instrument [7] can be summarized as

ωp = pω0

√
1 +Bp2, p = {1, 2, 3, ...}, (5)

where ω0 is the nominal fundamental frequency (i.e. the sig-
nal fundamental frequency if the inharmonicity coefficient B
is zero). Referring to Equation (4), the desired value of am
such that the pth partial is attenuated (m=p) is given by

a
p

= −2 cos(pω0

√
1 +Bp2). (6)

Hence, the same initialization procedure described before can
be followed for tracking string instrument notes.

3. ADAPTATION ALGORITHM

The following algorithm is a modified version of the RPE-
type algorithm developed by Nehorai [3]. This modification
was devised considering the outputs of each filter section, as
shown in Figure 2. Each section output is given, at time in-
dex k ∈Z, by ε[m, k] = ε[m−1, k]Hm(q−1), where ε[0, k] is
the input signal. This approach, commonly used for adapting
cascades of IIR ANFs [1, 4, 8], assumes that, using narrow

notches, each section can be updated independently. The pro-
posed algorithm adapts the N polynomial parameters, impli-
citly updating the M filter coefficients.

H1(q
−1) HM (q−1)

ε[1, k] ε[M,k]ε[M−1, k]ε[0, k]

Fig. 2. Cascaded second-order ANF sections.

3.1. Recursive Adaptation of the Model Parameters

The output of the mth section in the ANF cascade can be de-
scribed as a function of Am = 1 +amq

−1 + q−2 and the pole
contraction factor ρ.

ε[m, k] = ε[m−1, k]
Am(q−1)

Am(ρq−1)
. (7)

Rearranging (7) and taking its derivative to αn leads to

∂(Am(ρq−1)ε[m, k])

∂αn
=
∂(Am(q−1)ε[m−1, k])

∂αn
. (8)

The chain rule can be applied to both sides of Equation (8).

∂Am(ρq−1)

∂αn
ε[m, k] +

∂ε[m, k]

∂αn
Am(ρq−1) =

∂Am(q−1)

∂αn
ε[m−1, k] +

∂ε[m−1, k]

∂αn
Am(q−1). (9)

By defining ψn[m, k] = −∂ε[m, k]

∂αn
and using Equation (3),

Equation (9) becomes

∂
(
1+ρ(α

N
m
N

+···+α
1
m−2)q

−1

+ρ
2

q
−2
)

∂αn
ε[m,k]−ψn[m,k]Am

(
ρq

−1)
=

∂
(
1+(α

N
m
N

+···+α
1
m−2)q

−1

+q
−2
)

∂αn
ε[m−1,k]−ψ

n
[m−1,k]A

m

(
q
−1)
,

which leads to

ρmnε[m,k−1]−ψn[m,k]Am(ρq−1) =

mnε[m−1,k−1]−ψ
n
[m−1,k]Am(q−1). (10)

Equation (10) can be solved for

ψ
n
[m,k]=

mn(−ε[m−1,k−1]+ρε[m,k−1])+ψ
n
[m−1,k]A

m
(q

−1

)

Am(ρq−1)
.

(11)

By defining ϕ[m, k] = −ε[m−1, k−1] +ρε[m, k− 1], Equa-
tion (11) can be written as

ψn[m, k] =
mnϕ[m, k] + ψn[m−1, k]Am(q−1)

Am(ρq−1)
. (12)
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Notice that ψn[0,k] = −∂ε[0, k]/∂αn = 0. Then, for m=1,

ψ
n
[1, k] =

ϕ[1, k]

A1(ρq−1)
. (13)

Equations (12) and (13) may be put in recursive form by
substitution of Am(q−1) and Am(ρq−1) and application of
the delay operators.

Parameter update is achieved using an RLS equation error
algorithm [9] modified to adapt the N polynomial parameters
using M error functions. For each pair {m, k}, the RLS al-
gorithm has complexity O(N2).

A. For time index k, calculate for each m

ε[m, k] = ε[m−1, k] + amε[m−1, k−1] + ε[m−1, k−2]

− ρamε[m, k−1]− ρ2ε[m, k−2], (14)

P[m,k]=

(
P[m,k–1]–

P[m,k–1]ψ[m,k]ψ
T

[m,k]P[m,k–1]

λ[k] +ψT[m,k]P[m,k–1]ψ[m,k]

)
1

λ[k]
,

(15)
where P[m,k] is the pseudo-inverse of the N ×N Hessian
matrix for themth section,ψ[m,k]=[ψ1[m,k] · · · ψN [m, k]]T

and λ[k] is the forgetting factor, (0� λ[k] <1).
B. Update the parameter vector: θ[k]=[α

1
[k] α

2
[k]···α

N
[k]]T,

θ[k] = θ[k−1] +
1

M

M∑
m=1

P[m, k]ψ[m, k]ε[m, k]. (16)

C. Using θ[k], update am as in Equation (3).

3.2. Recursive Adaptation of PCFs

To enhance the tracking capabilities of IIR ANFs, Dragos̆ević
and Stanković [6] adopted a different PCF ρm[k] for each fil-
ter section and derived an RPE algorithm to update their val-
ues, with gradient ψρ[m, k] given by

ψρ[m, k] =
(amq

−1 + 2ρm[k]q−2)ε[m, k]

Am(ρm[k]q−1)
. (17)

The forgetting factors λ and λρ, used in the RPE algorithms to
adapt θ and ψρ, can also be different for each section. Results
in [4] show that good stability and tracking can be achieved
using λ[m, k+1] = (1−δ)λ[m, k]+δρm[k+1], 0 < δ � 1.
Also, λρ should be higher than λ, thus making ρ adapt slower
than the notch frequency. For the filter proposed in this paper,
better results were obtained updating λ[m, k] and λρ[m, k] as

λ[m, k+1] = min {(1−δ)λ[m, k]+δρm[k+1]κ, 1} and
λρ[m, k+1]=min{(1−δ)λρ[m, k]+δρm[k+1]κρ,1}, (18)

where κ and κρ are real values slightly higher than 1. Also, to
improve stability and to help keep each filter section tracking
only one partial, notch bandwidths BW [m, k] are limited by

maximum and minimum quality factors Qh and Ql. Each
quality factor is computed as Q[m, k] = ω̂m[k]/BW [m, k],
where BW [m, k] can be approximated [3] by π(1−ρ[m, k])
and ω̂m[k] is the estimate of the tracked partial frequency at
instant k.

The adaptation algorithm is given below. For initialization
values please refer to the appendix in Section 6.

Adaptation Algorithm

for k = 2, 3, ...
for m = 1, 2, ...,M

• compute ε[m, k] using Equation (14);
• compute ψ[m, k] using Equation (12);

• compute P[m, k] using Equation (15);

• compute ψρ[m, k] using Equation (17);

•P
ρ
[m,k]=

(
P
ρ
[m,k–1]–

P
2

ρ
[m,k–1] ψ

2

ρ [m,k]

λρ[m,k]+Pρ[m,k–1]ψ2

ρ[m,k]

)
1

λρ[m,k]
;

•ρh[m, k]=1−ω̂m[k]/(Qhπ); ρl[m, k]=1−ω̂m[k]/(Qlπ);

•ρm[k+1]=

max
{
min
{
ρm[k]+P

ρ
[m,k]ψ

ρ
[m,k]ε[m,k],ρh[m,k]

}
,ρl[m,k]

}
;

• compute λ[m,k+1] and λ
ρ
[m,k+1] using (18);

end for
compute θ[k] using Equation (16);
for m = 1, 2, ...,M

• update am and ω̂m[k+1]=arccos(−am/2);
end for

end for

3.3. Implementation Details

ANF tracking is sensitive to the initialization of notch coef-
ficients. An attempt to mitigate this problem is to initialize
each am such that its corresponding notch frequency is in the
vicinity of the searched frequency. As this procedure requires
previous knowledge about the signal, which may not be avail-
able, we present a different method in three steps.

In step 1, we use a single ANF section to locate and track
any frequency partial. In step 2, we cascade another section to
the ANF to locate and track a second partial. In step 3, we use
the proposed model to track M signal partials. The outline of
the algorithm is given ahead.

In step 1, a single ANF section is initialized with a notch
centered around an arbitrary frequency ω̂1. During adapta-
tion ρ[1, k] tends to increase as the notch gets closer to a par-
tial [6]. This increase is accompanied by the value of Q[1, k],
the ANF section quality factor. That way, a smoothed version
of Q[1, k], Q[1, k] = (1−δ

Q
)Q[1, k − 1]+δ

Q
Q[1, k], can be

used to indicate if a partial has been locked. When Q[1, k]
reaches a threshold Q1, step 2 begins.
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In step 2, the new cascaded ANF section is initialized with
a notch centered around a frequency slightly higher than the
current ω̂1[k]. Since the partial component being tracked by
the first ANF is attenuated at its output, the second ANF tends
to track a different partial. As in step 1, when the smoothed
version of the second ANF quality factor Q[2, k] reaches a
threshold Q2, step 3 begins. During this step, the quality fac-
tor of the first notch is kept constant by updating its PCF as
ρ1[k]=1−ω̂1[k]/(Qlπ).

For each k, the ratio r[k] between the lowest and the high-
est tracked partials is measured and smoothed, respectively,
as r[k] = min{ω̂1[k], ω̂2[k]}/max{ω̂1[k], ω̂2[k]} and r̄[k] =
(1−δr)r̄[k − 1]+δrr[k], 0<δr�1.

When step 3 is initialized, r̄[k] is compared with a set
rh of ratios between low integers η and τ , with η < τ ,
such as {1/2, 1/3, 2/3, 3/4, 3/5, 4/5, 5/6, 5/7, 6/7}. The value
in rh closer to r̄[k] is likely to be the same as the ratio
between the lowest and the highest tracked partial num-
bers. This way, the polynomial parameters can be initial-
ized by solving a linear system composed by Equation (4)
so that, for N arbitrary m values, notches are centered
over frequencies (m/η) min{ω̂1[k], ω̂2[k]}. Alternatively,
polynomial parameters can be initialized so that, for N
arbitrary m values, notches are centered over frequencies
ω̂m[k] = mω̂0[k](1 + B̂[k]m2)1/2. Estimates for ω0[k] and
B[k] can be obtained by substituting the tracked partials
frequencies in a 2 equations system composed by (5) for
p = {η, τ}. The ratios in the proposed set rh were chosen
assuming that none or just one partial falls in between ω̂1[k]
and ω̂2[k]. This is a reasonable assumption since, in step 2,
ω̂2[k] is initialized close to ω̂1[k], making it unlikely that the
the second ANF section misses 2 or more subsequent partials
before locking.

In cases where the partials are in octave relation, a third
ANF section is used to determine if there is another partial
between them. This section is initialized with its notch fre-
quency ω̂3[k] between ω̂1[k] and ω̂2[k]. When the smoothed
version of its quality factor Q[3, k] reaches a threshold Q3,
the ratio roct =‖ω̂3[k]−ω̂2[k]‖/‖ω̂2[k]−ω̂1[k]‖ is computed.
This ratio will be approximately equal to 0.5 if this section
is tracking a partial at half the distance between ω̂1[k] and
ω̂2[k]. During this step, the quality factors of the first and
second notches are kept constant by updating its PCFs as
ρm[k]=1−ω̂m[k]/(Qlπ).

During steps 1 and 2, we use θ[k] = a1 and M=N=1
for each ANF section and adapt them independently. During
step 3, we use the proposed model.

4. TESTS AND EXAMPLES

Tests were performed using synthetized signals ε[0, k], com-
posed by chirps of quasi-harmonic sinusoids with random ini-
tial phases.

ε[0, k] =

P∑
p=1

Ap cos(ϕp[k] + φp) + e[k]. (19)

For partial p, Ap is its amplitude, d(ϕp[k])/dk is its instanta-
neous frequency, φp is a random phase and e[k] is white Gaus-
sian noise. Instantaneous frequency d(ϕp[k])/dk = ωp[k] is
given by Equation (5). The signal parameters used in the tests
were P = 8, Ap = 1/8, SNR =30 dB, sampling frequency
fs = 44.1 kHz and B = 0.003. The ANF model parameters
were N=3 and M=7.

Signals with 8 different nominal fundamental frequencies
where tested, all chirping during 2 s from f0 to 2(4/12)f0, an
interval of 4 semitones. Ten tests were done for each initial
f0, each with a different set of φp.

All the tests initialized with f0 equal to 500, 700, 900
and 1100Hz were successful in all steps, closely tracking the
first 7 partials. The same happened to 9 out of the 10 tests
with f0 initialized as 300 Hz. Figure 3 shows the results of
a test with f0 varying from 1100 Hz at t = 0 s to 1388.4 Hz
at t = 2 s. Although the majority of tests were successful,
most tests initialized with f0 = 200 Hz and one initialized
with f0 =300Hz were not. This ocurred because the tracking
results of steps 1 and 2 were noisy and could not provide good
estimates of the ratios between the two first tracked partial
frequencies.

Fig. 3. Tracking of inharmonic chirp with f0 = 1100 Hz at
t=0s (model order N=3).

It was possible to observe on the results of tests initialized
with f0 =1500 Hz that the tracking of the seventh partial be-
came less precise as its frequency increased. In Figure 4 it
can be seen that the seventh notch deviates towards the eighth
partial. This problem occurred because, for the increasing
distance between partials (due to high f0 combined with in-
harmonicity), the chosen model order N = 3 is too low for
closely tracking all 7 first partials. It can be easily solved by
raising the value of N as shown in Figure 5.

5. CONCLUSIONS

In this paper we proposed an IIR ANF cascade design suit-
able for tracking partials of quasi-harmonic signals. Track-
ing tests, performed with a cascade of 7 ANF sections with
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Fig. 4. Tracking of inharmonic chirp with f0 = 1500 Hz at
t=0s (model order N=3).

Fig. 5. Tracking of inharmonic chirp with f0 = 1500 Hz at
t=0s (model order N=4).

notch coefficients modeled by an adaptive polynomial of or-
der N = 3, showed that the proposed design and adaptation
algorithm were able to successfully track the first 7 partials
of several quasi-harmonic chirp signals. For high frequency
regions, it was necessary to raise the polynomial order by 1 to
allow close tracking of all first 7 partials. Limitations, inher-
ent to IIR ANF, appeared in the low frequency range. Future
work will focus on finding solutions for this low-frequency
issue. In addition, further investigation is needed to establish
a systematic way of model order selection.

Due to space restrictions, important comparisons with
other methods will also be portrayed in future work. Mainly,
tests will be used to evaluate ANFs robustness while tracking
quasi-harmonic partials subject to interferent partials. It is
expected that, by adapting the ANF coefficients using the
proposed model, deviations of the notches trajectories during
frequency crossings can be more easily prevented then when
adapting the ANF coefficients directly.

6. APPENDIX

Single ANF Initialization (for step 1)
k={0,1},M=N=1, ω̂1[k]=2π 900/fs,P[1, k]=10

−3

,

Ql=Q[1, k]=10, Qh=180, Q[1, k]=0, Pρ [1, k]=2×10
−2

,

Q1=30,ρ[1, k]=1−ω̂1[k]/(Q[1, k]π), δ
Q

=1.5×10
−3

,

δ=10
−4

,λ[1, k]=0.992,λρ[1, k]=0.9992,κ=1,κρ=1.002.

Single ANF Initialization (for step 2)
M=N=1,P[2,k]= ω̂1[k]2×10

−3

, Pρ [2, k]=2×10
−2

,

ω̂2[k]=1.2 ω̂1[k], ρ[2,k]=1−ω̂2[k]/(Q[2,k]π),

Qh=35, Q2 =22, λ[2,k]=0.992, λρ[2,k]=0.9999,

Q[2, k]=0, Ql=Q[1, k]=Q[2, k]=6, r̄[k]=0, δr=10
−2

.

Single ANF Initialization (octave resolution)
M=N=1, ω̂3[k]=max{ω̂1[k], ω̂2[k]}+0.5‖ω̂2[k]−ω̂1[k]‖,
P[3, k]=2×10

−3

, ρ[3, k]=1−ω̂3[k]/(Q[3, k]π), δ
Q

=10
−4

,

Q3 =25, Q[3, k]=0, Ql=Q[3, k]=6,Qh=35, Q[2, k]=6,

P
ρ
[3, k]=2×10

−2

, λ[3, k]=0.992, λρ[3, k]=0.9999.

ANF Cascade Initialization (for step 3)
M=7,N=3, κ=1.01, κρ=1.001,m = {1, . . . ,M},
ω̂m[k]=(m/η) min{ω̂1[k], ω̂2[k]}, Ql=6, Qh=100,
λ[m, k] = λρ[m, k] = ρ[m, k], Q[m, k]=40, δ=0.002,

compute αn for an N -equation system using (4),
P[m, k]=2.5×10

−5

ω̂1[k]diag{(5m)
−3

,(5m)
−2

,(5m)
−1},

Pρ[m, k]=Pρ[1, k−1], ρ[m, k]=1−ω̂m[k]/(Q[m, k]π).
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