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ABSTRACT

A major challenge in designing MAC protocols for wireless

sensor networks (WSN) is the uncertainty about the traf-

fic offered by network, which usually forces conservative

assumptions leading to a degradation in throughput and

delay performance. Traffic estimation is discussed here in

the context of the distributed detection WSNs (DD-WSNs).

We approach this issue by first showing that the traffic has a

Poisson distribution via stochastic geometry tools. Then the

traffic is estimated via two algorithms, the least conditional

maximum a priori (lcMAP) estimator and the regularized

maximum likelihood estimator (rMLE). To measure the

correlation between supplied communication resources and

needed resources by the WSN, we propose the supply de-

mand ratio (SDR) as a metric. Simulation results shows that

both estimators achieve a performance close to the optimal

MAP estimator under low channel SNR, hence transmission

energy can be saved. Furthermore, the rMLE achieves the

optimal SDR via choosing regularization factor value.

Index Terms— Traffic estimation, distributed detection,

stochastic geometry, wireless sensor networks.

I. INTRODUCTION

Distributed detection using WSN still is attracting atten-

tion in several application such as battle field surveillance

[1], natural disasters alarming systems [2], or monitoring

critical civilian structures [3]. This class of applications

however, is primarily concerned with performing a specific

task within a real-time deadline under many constraints of

WSN operation [4]. Many factors are considered in the

design of such systems, however, the MAC protocol design

plays an integral role in such applications.

Many MAC protocols designed for WSNs have been

proposed for general applications [5] and mission critical

applications [6] as well. A major challenge in designing such

MAC protocols is the uncertainty about the traffic offered by

the WSNs that usually forces conservative assumptions lead-

ing to a degradation in throughput and delay performance.

In this paper however, we consider the problem of traffic

estimation in the context of distributed detection WSN (DD-

WSN). Given the special nature of traffic in distributed

detection networks, we model the system using stochastic

geometry to construct a statistical model of the traffic. Then

statistical signal processing tools are used to estimate the

traffic offered by the network. We show how this information

can be incorporated in the structure of MAC protocols

aimed at DD-WSN. Stochastic geometry has been used in

modeling wireless networks [7], and coverage in WSNs [8].

In our previous work [9], we used stochastic geometry to

characterize the detection performance of DD-WSN.

In this paper though, we extend the later work to show

that the traffic in distributed detection WSN follows a

Poisson distribution. Making use of this, traffic estimation

is molded as a statistical parameter estimation problem.

Using the powerful maximum a priori (MAP) estimator

requires exact statistical information about the traffic, which

is dependent on the true target hypothesis. Whereas using

the simpler maximum likelihood estimator (MLE) degrades

performance. Hence, we propose two algorithms to estimate

traffic; the least conditional MAP (lcMAP) and the regu-

larized MLE (rMLE). The lcMAP overcomes the lack of

information about the target via using probability distribu-

tion under both hypotheses. On the other hand, the rMLE

requires the knowledge of the mean traffic while providing

comparable performance. Both algorithms provide good es-

timates under low SNRs, hence, transmission energy can be

reduced, which consequently increases the network lifetime.

Finally, we introduce the supply demand ratio (SDR) as a

performance metric to gauge the match between the supplied

communication resources and the network demand.

The paper is organized as follows; In Section II, the WSN

is modeled using the stochastic geometry framework, and the

assumptions on the communication channel are presented

as well. Section III proposes the design of low-delay MAC

protocols including traffic estimation with the lcMAP and

rMLE in addition to the SDR metric. Simulation results and

discussion is presented in section IV. Finally, we conclude

the paper with Section V.

II. SYSTEM MODEL

Le the sensor nodes (SNs) in a WSN be modeled by

a simple stationary isotropic homogenous Poisson point
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process (PPP) [10], say Φ = {Xi}, where Xi is the location

of the ith SN Φ has intensity of λ SN/m2 in sensing field

A, where A ⊂ R
2. This model implicitly implies that Xi’s

are independent and identical distributed (iid) according to a

uniform distribution U(A) and the number of the SN N is a

Poisson random variable (RV) with mean λ. This assumption

reflects the practical nature of WSNs in which SNs number

changes randomly due to communication link outage and

node failure. The SNs report back to a base station (BS)

directly via a single hop shared MAC. The BS can be a

cluster head amongst the SNs or a receiver mounted on

board an unmanned aerial vehicle (UAV). We assume perfect

synchronization and channel compensation between the FC

and SNs.

The WSN is tasked with the distributed detection of any

intrusion into the sensing field by periodically taking a

snapshot of the field, every detection period, sayT second.

Given the intruder, which we refer to as target, is mobile with

relatively high speed, the snapshots of target’s location are

approximately independent [11]. Hence, studying a single

snapshot is sufficient. At an arbitrary time snapshot nT , for

n ∈ N, the target takes a random location Xt such that

Xt /∈ Φ. Let the target have a random amplitude A taken

from known distribution p(a), in every network realization.

The emitted energy decays as it reaches the SN according

to a power law with exponent e ≥ 1, which reasonably

describes acoustic or diffusive sources [12], [13] for e = 1.
Each SN collects 2K measurements that are corrupted by

iid additive white Gaussian noise (AWGN) in space and time
having zero mean and known variance σ2

s . The measure-
ments under the target’s absence and presence hypotheses,
H0 and H1 respectively, take one of the following forms

H0 : Si[k] = Wi[k] (1)

H1 : Si[k] =
A

‖Xi −Xt‖e
+Wi[k] (2)

where k = 0, · · · , 2K − 1 and Wi[k] is iid AWGN. Upon

taking measurements at an arbitrary SN at Xi, the SN

locally reaches a binary decision, I (Xi) = {0, 1}, about the

presence of the target via a local detector. Since the target’s

parameters are unknown to the SNs, the energy detector is

adopted as our local detector. The local probability of false

alarm is [14]

Pfa = Γ(K,
γ

2
)/Γ(

γ

2
) (3)

where Γ(·, ·), Γ(·), and γ are the incomplete Gamma

function, Gamma functions, and local detection threshold

respectively. The later however, is assumed to be the same

for all SNs for simplicity. On the other hand, the average

local probability of detection for a given SN and target

locations, xi and xt respectively, is [9]

Pd(x) = E

[
QK

(√
A2

σ2
s ‖xi − xt‖2e

,
√
γ

)]
(4)
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Fig. 1: MAC algorithm. The periods are T detection period, Ts sampling time, Tn

notification time, Tf feedback time, Tc contention time, and Td data transmission

time. Packets are: DET detection notification, RTB request to book data slot, ASN

assign data slot number N, and END contention stage end.

where is the expectation with respect to p(a) and QK(·, ·)
is the generalized Marqum Q-function.

In contrast to our previous work [9], in which detecting

SNs send I(Xi) to the BS, they transmit information about

the target to the BS. This information might be a confidence

measure of the local detection, a soft decision, or even

estimates of the target [15]. This data is sent over a shared

communication channel however, which is corrupted by

AWGN with zero mean and known variance σ2
c . The WSN

employs a MAC protocol to regulate communication via

firstly scheduling the SNs and then allocating a dedicated

time slot for transmission. We assume that the contention

and data transmission occurs in a time less than the detection

period T .

III. TRAFFIC ESTIMATION FOR DD-WSNS

In this section, we describe the details of MAC protocol

augmented with a traffic estimation phase. Then traffic

estimation problem is presented for which the lcMAP and

rMLE are put forward as a feasible alternatives for the MAP

and MLE estimators. Finally, we propose a the SDR as a

performance metric for distributed detection WSNs.

III-A. MAC Protocol Structure

The major issue in the MAC protocol design is identifying

the nature of traffic, which arise due to having a random

number of detecting SNs. Thus, having an estimate of the

offered traffic enables the SNs to tune the MAC parameters,

in fact the medium access probabilities P , to increase the

successful transmission probability. Thus, we propose a
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MAC protocol, similar to the contention based protocols in

[6], that consist of three main stages: 1) Traffic estimation. 2)

Scheduling (using contention). 3) Data transmission (using

TDMA), as shown in Fig.1.

In the first stage, all the detecting SNs send the same

notification packet DET to the BS in the notification slot

Tn. The DET packet has N identical symbols each with

E energy. Those packets add up coherently enabling the

BS to estimate the received signal’s amplitude, which is

proportional to the number of detecting SNs or traffic. Then,

the BS broadcasts the estimated traffic, Θ̂ ≈ ∑
Xi∈Φ

I(Xi),
back to the SNs in Tf . In the second stage, the SNs set their

access probability to P = 1/Θ̂, which would be optimal in

terms of transmission success probability. The SNs attempt

to book a data time slot by sending the request to book

RTB packet. If no collision occur with other RTB, the BS

sends out a packet ASN assigning a specific data slot N to

the requesting SN. The contention period continuous until

the number of winners equals Θ̂ or after a certain time is

exceeded, after which the BS ends the contention phase by

sending the END packet. In the last stage, the SNs transmit

their data according to the assigned data time slots.

III-B. Traffic Estimation

In the traffic estimation phase, the BS receives the DET

packets from all active SNs in the same time slot. The

received signal at the BS adds up coherently to give

Y [n] =
√
E
∑

Xi∈Φ

I(Xi) + V [n]

=
√
EΘ+ V [n] (5)

where V [n], n = 0, · · · , N − 1 are an iid AWGN with

the distribution N (0, σ2
c ), and Θ =

∑
Xi∈Φ

I(Xi), which

is the number of positive local detection decisions in the

network. Hence, it is the number of SNs that will transmit

data to the BS. The problem now is to estimate Θ from

(5). A straightforward and simple estimator is the maximum

likelihood estimator (MLE)

Θ̂MLE = argmin
Θ∈N

N−1∑

n=0

(
y[n]−

√
EΘ
)2

(6)

where y[n], ∀n is a realization of (5). The MLE finds the

point in N closest to y[n]/
√
E. The MLE though, assumes

that the traffic is an unknown constant, hence it does not use

any prior information about the traffic. However, the traffic

is actually a RV that depends on the detection probability of

the SNs. The following propositions provide the statistical

structure of the traffic under H0 and H1.

Proposition 1. Given that the WSN is deployed as a sta-

tionary homogeneous PPP. Then, under hypothesis H0, the

number of detecting SNs, and hence the traffic, is distributed

according to a homogeneous Poisson RV with mean

E[Θ] = λPfa |A| (7)

where |A| is the area of the sensing field.

Proof: Under hypothesis H0, the probability of de-

tection is actually Pfa. In other words, the SN becomes

active with a constant probability. Consequently, the traffic

is the number of SNs in the independent (Bernoulli) thinned

point process [10], with Pfa thinning probability. Hence,

the number of such SNs is a Poisson RV with mean being

λPfa |A|.
Proposition 2. For a stationary homogeneous PPP WSN

using energy detector for local detector detection. The traffic

under H1 is a inhomogeneous mixed Poisson RV with mean

E [Θ] = λ

∫

A

EA

[

QK

(√
A2

σ2x2e
,
√
γ

)]

dx (8)

Proof: Conditioned on A, the distribution of active SNs

is a non-homogeneous Poisson RV [9], i.e. Poi (λPd(x,A)).
Averaging over A yields the following mixed Poisson dis-

tribution

Θ ∼ EA [Poi (λPd(x,A))] (9)

and the mean follows as in (8).

The former proposition implies that the traffic under H0 is

linearly proportion to the average number of SNs, λ |A|, and

the local probability of false alarm. On the other hand, the

situation is more complex under H1, the traffic is dependent

on the effective area denoted by the integral in the right hand

side of 8. Given a traffic distribution, the MAP estimator can

be used

Θ̂MAP = argmin
Θ∈N

N−1∑

n=0

(
y[n]−

√
EΘ
)2

− log p(Θ) (10)

where p(Θ) is Θ’s distribution. Although the MAP is the

optimal estimator, it cannot be implemented since the dis-

tribution p(Θ) varies with Hi for i = {0, 1}. To overcome

this obstacle though, we propose evaluating (10) for both

hypotheses and choose the one with least value over all Θ
points as our objective function, then choose the correspond-

ing minimizer, since this cost function is expected to be one

with the correct prior. We call this estimator least conditional

MAP (lcMAP)

J0(Θ) =

N−1∑

n=0

(
y[n]−

√
EΘ
)2

− log p(Θ|H0) (11)

J1(Θ) =
N−1∑

n=0

(
y[n]−

√
EΘ
)2

− log p(Θ|H1) (12)

Θ̂lcMAP = argmin{min
Θ∈N

J0(Θ),min
Θ∈N

J1(Θ)} (13)

The lcMAP estimator is expected to resemble the MAP

estimator’s performance, also it inherits the biased estimate
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of Θ as shown later in Section (IV). Reducing the bias is

desirable, especially in our situation because of the depen-

dance of communication time slot allocation on it. To this

end, we reconsider (10) and (6) more carefully this time.

We observe that (10) is a regularized form of (6), with the

regularized term being the log-likelihood function. Replacing

the later with a penalty acting on high deviations from the

mean generally yields lower bias from the mean. Therefore,

we suggest the following estimator that we name regularized

MLE (rMLE)

J2(Θ) =

N−1∑

n=0

(
y[n]−

√
EΘ
)2

+ ν (E [Θ|H0]−Θ)2(14)

J3(Θ) =
N−1∑

n=0

(
y[n]−

√
EΘ
)2

+ ν (E [Θ|H1]−Θ)2(15)

Θ̂rMLE = argmin{min
Θ∈N

J2(Θ),min
Θ∈N

J3(Θ)} (16)

where ν is arbitrary regularization factor chosen such that

ν > 0. The structure of the rMLE provides a controllable

trade-off between the variance and the bias of the estimate

through ν. This property proves very useful as shown in the

simulation results.

III-C. Supply Demand Ratio

The suggested MAC estimates the traffic to provide the

scheduler with the an estimate of the resource demand by

WSN. In practice though, this estimate might vary from the

actual demand, hence the supply of resources is different

from the demand. Supplying less resources leads to loss

of information whereas supplying more resources causes

waste of them that in turn causes more delay and energy

expenditure. We measure the performance of the MAC

protocol, more specifically the traffic estimator impact on

the MAC protocol by using the supply demand ratio (SDR)

defined as

SDR =
E[Θ̂]

E [Θ]
(17)

An optimal SDR takes a unity value. However, having SDR

less than unity implies depriving SNs from communication

resources, whereas a value greater than unity implies a waste

of resources.

IV. RESULTS AND DISCUSSION

We simulate a WSN in a field of 300 × 300m2 with

SNs deployed according to a uniform random distribution

therein. To exclude the edge effects we choose only SNs

within 150m from the origin. The SNs are deployed with

intensity λ = 2 × 10−3SN/m2 with Pfa = 10−3 each.

Every SN takes 200 samples of a target having a Gaussian

amplitude A ∼ N (20, 8), located at the origin without loss

of generality. The SNR is defined to be the target’s emitted
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Fig. 2: The means square estimate (MSE) of MAP estimator, lcMAP,

MLE, and the rMLE plotted against communication SNR

signal power over the noise power at the target’s location,

i.e., it is E[A2]/σ2, which is chosen to be 10 dB. Each

detecting SN send a 50 samples signal of constant level

to the BS. This signal however, is corrupted by AWGN.

We simulated the network for various channel SNRs. The

simulation is run for 104 Monte Carlo iterations.

We compare the means sqaure error (MSE) of the es-

timators in Fig. 2 under both H0 and H1 hypotheses for

low range of channel SNR. The rMLE design parameter is

ν = 0.8. Generally, all the estimators have relatively good

performance and they significantly improve as the channel

SNR increase. Under H0, the lcMAP estimator outperforms

both MLE and rMLE estimators, in fact it approaches the

optimal MAP MSE. However, under H1 both the lcMAP

and rMLE significantly approach the MAP. The behavior of

the lcMAP is simply explained by (13), in which it chooses

the cost function closer to the true MAP. As for the rMLE,

the good performance is due to the regularization that has

more effect compared with the H0 case.

The SDR metric is shown in Fig. 4. The MLE shows the

worst performance by supplying more than needed resources,

especially under H0 due to the small average traffic. This

trend also continues under H1 although less severely. The

lcMAP and MAP exhibit similar performance, in contrast to

the MLE though, deprive the SNs from resources. Whereas

the rMLE shows the best SDR approaching unity for most

SNR values under both hypotheses. This is again attributed

to the penalization of large deviations form the mean and to

the suitable regularization factor ν.

This affect of the regularization factor on the SDR is

depicted in Fig. 4 for a channel SNR of -25 dB under

H1. As evident from the figure, various SDR values can be

attained by varying ν. The optimal value however, matching

the supply and the demand in the WSN, is around 1.4.

V. CONCLUSION

We present a traffic estimation algorithms for distributed

detection in WSNs. Using tools from stochastic geometry,
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Fig. 3: The mean estimate of MAP estimator, lcMAP, MLE, and the

rMLE plotted against communication SNR.
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the traffic is shown generally to be a Poisson random

variable. This results facilitates casting the problem as

a parameter estimation and solved using statistical signal

processing methods.We propose two algorithms to estimate

the traffic in addition to the conventional MLE and MAP

algorithms. The least conditional MAP (lcMAP) is proposed

with performance closely approaching the optimal MAP

algorithm, however still requiring full statistical knowledge

of the traffic. As a result, the regularized MLE (rMLE) is

proposed that only requires the mean of the traffic. Both the

lcMAP and rMLE provide good estimates under relatively

low SNRs. Thus, reducing the needed transmission energy of

the SNs, which consequently prolongs the network lifetime.

Furthermore, the proposed algorithms provide a trade-off

between delay and throughput. The SDR is proposed as

a measure of the traffic estimation impact. Optimal SDR

values of unity is attained only by the rMLE through

choosing an appropriate value for the free design parameter.

For future work, we intend to investigate the case of

fading channels between the SNs and the BS. In addition

to theoretical characterization of the delay and throughput

in DD-WSN.
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