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ABSTRACT

The Laplace method and Monte Carlo methods are tech-
niques to approximate integrals which are useful in nonlinear
Bayesian computation. When the model is one–dimensional,
Laplace formulas to compute posterior expectations and vari-
ances have been proposed by Tierney, Kass and Kadane
(1989). We provide in this article formulas for the multi-
dimensional case. We demonstrate the accuracy of these
formulas and show how to use them in importance sampling
to design an importance density function which reduces the
Monte Carlo error.

Index Terms— Nonlinear Bayesian estimation, Laplace
method, Monte Carlo methods, importance sampling

1. INTRODUCTION

The Laplace method and importance sampling (IS) are useful
approximation techniques to estimate the hidden state of a
system given nonlinear observations. The Laplace method is
a deterministic method which is consistent as the data sample
size goes to infinity or as the observation noise intensity goes
to zero. IS is a Monte Carlo (MC) method that is consistent
as the number of simulations goes to infinity.

Previous work dealing with MC and the Laplace method
includes, e.g., comparison [1] and combination [2] of the
Laplace method with Monte Carlo Markov chain (MCMC)
algorithms.

In this article, we compare the Laplace method and IS for
nonlinear Bayesian estimation. After defining the Bayesian
estimation framework we consider in section 2, we provide
multidimensional formulas to compute posterior moments in
section 3. These formulas have been established by Tierney et
al. in [3] when the dimension of the model is one. The IS al-
gorithm is presented in section 4. In this section, we propose
to choose the importance density function by shifting and
scaling the sampling density using the posterior expectation
and covariance computed with the Laplace method. IS and
the Laplace method are numerically compared in section 5 on
a simple two-dimensional triangulation problem. Numerical
experiments illustrate the accuracy of the Laplace method.

2. BAYESIAN MODEL

Consider a system with Rd–valued hidden state X and deliv-
ering an observation Y according to the model

Y = H(X) + W

where W is a random variable independent from X . The like-
lihood function of the observation Y is denoted by g(x) =
P[Y |X = x]. X admits the prior probability density function
(pdf) q. Bayesian estimation consists in computing the poste-
rior pdf p of X conditionally to the observation Y . p is given
by the Bayes formula

p(x) =
g(x)q(x)∫

Rd g(x)q(x)dx
. (1)

In the sequel we assume that the posterior pdf p admits an
unique global maximum x̂, called the maximum a posteriori
(MAP).

Throughout the article, the posterior expectation and co-
variance will respectively be denoted by

x̄ =
∫

Rd

xp(x)dx and Σ̄ =
∫

Rd

xxT p(x)dx− x̄x̄T .

3. LAPLACE METHOD

3.1. Laplace approximation

Let {hλ}λ>0 be a collection of functions in C4(Rd). Con-
sider the integral

Iλ =
∫

Rd

e−λhλ(x)dx.

Theorem 3.1 (Laplace approximation). Assume that there ex-
ists λ0 such that, for all λ > λ0,

(i)
∫

Rd e−λhλ(x)dx < ∞,

(ii) hλ has a unique global minimum x̂λ,

(iii) all the k–th order partial derivatives of hλ, for k ∈
{0, . . . , 4}, are bounded independently of λ.
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Then, when λ → +∞,

Iλ = (2π)d/2e−λh(x̂λ) det[λh′′λ(x̂λ)]−1/2 {1 + O(λ−1)}.

An important property is that the error made by this ap-
proximation is a relative error. The proof of theorem 3.1 can
be found in [4].

3.2. Bayesian application

Consider the Bayesian model defined in section 2. Let
J(x) be the observed information matrix (d × d), J(x) =
−(log g)′′(x)− (log q)′′(x), and x̂ = arg max

x∈Rd

{g(x)q(x)} be

the MAP.
Let φ ∈ C4(Rd) be a strictly positive function. Suppose

that H ∈ C4(Rd) and log q ∈ C4(Rd). Suppose the Bayesian
model defined by g and q is identifiable. Then, theorem 3.1
can be used to compute the conditional expectation

E[φ(X)|Y ] =

∫
Rd φ(x)g(x)q(x)dx∫

Rd g(x)q(x)dx
.

The Laplace method is applied on the numerator and the de-
nominator. It yields the approximation

φ(x∗)g(x∗)q(x∗)
g(x̂)q(x̂)

×
(

det[−(log g)′′(x̂)−(log q)′′(x̂)]
det[−(log g)′′(x∗)−(log q)′′(x∗)−(log φ)′′(x∗)]

)1/2

where x∗ = arg max
x∈Rd

{φ(x)g(x)q(x)}, which is called fully

exponential Laplace approximation [3].
Let M be the moment–generating function (mgf) associ-

ated with the posterior distribution. It is defined by

M(a) = E[eaT X |Y ], a ∈ Rd,

and it verifies E[X|Y ] = M ′(0)T and V[X|Y ] = M ′′(0) −
M ′(0)T M ′(0). The fully exponential Laplace approximation
of M(a) is

ML(a) =
eaT x̃g(x̃)q(x̃)

g(x̂)q(x̂)

×
(

det[−(log g)′′(x̂)− (log q)′′(x̂)]
det[−(log g)′′(x̃)− (log q)′′(x̃)]

)1/2

(2)

where
x̃ = x̃(a) = arg max

x∈Rd

{eaT xg(x)q(x)}. (3)

In [3], Tierney et al. propose to approximate the posterior ex-
pectation and variance by differentiating the Laplace approxi-
mation of the mgf. They prove the consistency of the approx-
imations obtained after differentiation as the noise standard–
deviation σ of Y |X = x goes to 0 or, equivalently, when
the number of observations (i.e., the dimension of Y ) goes to
infinity.

Theorem 3.2 (Tierney, Kass, Kadane (1989)).

E[X|Y ] = (ML)′(0)T + O(σ4)

and

V[X|Y ] = (ML)′′(0)− (ML)′(0)T (ML)′(0) + O(σ6).

Thereafter we derive approximate multidimensional for-
mulas for the posterior moments: x̄L ≈ E[X|Y ] and Σ̄L ≈
V[X|Y ].

Theorem 3.3. Let x̄L = (ML)′(0)T and Σ̄L = (ML)′′(0)−
(ML)′(0)T (ML)′(0). Then,

x̄L = x̂− 1
2
Ĵ−1Ĵ ′T vec[Ĵ−1] (4)

and

Σ̄L = Ĵ−1 +
1
2
Ĵ−1Ĵ ′T (Ĵ−1 ⊗ Ĵ−1)Ĵ ′Ĵ−1

+
1
2

(Id ⊗ vec(Ĵ−1)T Ĵ ′)(Ĵ−1 ⊗ Ĵ−1)Ĵ ′Ĵ−1

− 1
2

Ĵ−1(Id ⊗ vec(Ĵ−1)T )Ĵ ′′Ĵ−1. (5)

where Ĵ = J(x̂) and x̂ is the MAP.

The vec operator vectorizes a matrix by stacking its
columns and ⊗ denotes the Kronecker product. J ′ and J ′′

denote the first derivative and the second derivative (Hes-
sian matrix) of J, respectively. See [5] for details on matrix
calculus.

Sketch of the proof. We give here a sketch of the proof in the
multidimensional case for the posterior expectation (4). De-
tails are provided in the Appendix. The matrix calculus rules
used are defined in [5]. Starting from (2), we decompose the
derivative of ML(a) as,

(ML)′(a) =
∂ML

∂x̃

dx̃

da
+

∂ML

∂a
.

• For all a ∈ Rd, x̃(a) cancels the gradient of (3): a +
(log g)′(x̃(a)) + (log g)′(x̃(a)) = 0, which gives dx̃

da =
J(x̃(a))−1 after differentiation w.r.t. a.

• ∂ML

∂x̃ is computed using the matrix derivative formula
d det J(x)

dx1
= (det J(x)) tr

[
J(x)−1 ∂J(x)

∂x1

]
.

• ∂ML

∂a (a = 0) = x̂, since x̃(0) = x̂ according to (3).

Finally we obtain the following approximation,

E[X|Y ] ≈ x̂− 1
2
J(x̂)−1


tr
[
J(x̂)−1 ∂J

∂x1
(x̂)
]

...

tr
[
J(x̂)−1 ∂J

∂xd
(x̂)
]
 (6)

which has the compact expression (4).
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Expression (6) gives the posterior expectation as a func-
tion of the MAP. The second term in (6), which involves the
derivative of the information matrix J , is related to the skew-
ness of the posterior pdf p. The formulas in Theorem 3.3 are
often very accurate. For example, in a one–dimensional case,
consider the gamma distribution γ(k, θ), with pdf p(x) ∝
xk−1e−

x
θ . p has various shapes when (k, θ) varies. Applying

(4) and (5) with J(x) = k−1
x2 and x̂ = (k − 1)θ yields: x̄L =

x̂− 1
2 Ĵ−2Ĵ ′ = kθ and Σ̄L = 1

2 Ĵ−4[2Ĵ3+2Ĵ ′2−Ĵ Ĵ ′′] = kθ2.
These are the exact values of the expectation and the variance
of the gamma distribution.

4. IMPORTANCE SAMPLING

4.1. Basics on importance sampling

A classical MC method to approximate the posterior distribu-
tion and its moments is importance sampling. Let q̃ be a pdf,
called importance pdf, such that supp{p} ⊂ supp{q̃}. IS
consists in generating N random variables X1, . . . , XN from
q̃, and weighting each Xi for i = 1, . . . , N by the weights,

wi =
g(Xi)q(Xi)

q̃(Xi)
. (7)

The approximation pN of the posterior pdf p is then

pN =
N∑

i=1

w̄iδXi (8)

where w̄i = wiPN
j=1 wj is the normalized weight and δXi is

the Dirac measure centered at Xi for i = 1, . . . , N . The
approximations of the posterior expectation and covariance
are thus respectively

x̄N =
N∑

i=1

w̄iXi and Σ̄N =
N∑

i=1

w̄i(Xi−x̄N )(Xi−x̄N )T .

(9)
The prior pdf is often chosen as an importance pdf, i.e.

q = q̃. This is the choice we make in section 5.2. In the
sequel we assume that we can sample from q.

4.2. Improved importance pdf

The choice of the importance pdf q̃ is important to control the
MC error, namely the distance between pN (8) and p. Pre-
cisely, the MC error is related to the asymptotic variance of
the weights w̄i

V (q̃) =
1
N

 ∫
Rd g(x)2 q(x)2

q̃(x) dx

(
∫

Rd g(x)q(x)dx)2
− 1

 ,

see [6].

The variance V (q̃) is large when q̃ does not overlap g.
It is minimal when the q̃ is equal to the posterior pdf p, i.e.
q̃opt(x) = p(x) ∝ g(x)q(x), in which case it is 0. But of
course, it is not easy to sample directly from p because its
normalizing constant is unknown.

There are several strategies to design a good q̃, such as
the cross–entropy method [7]. We propose to approach q̃opt
by shifting and rescaling the prior pdf q as

q̃(x) =

√
det Σq

det Σ̄L
q
(
Σ1/2

q (Σ
L
)−1/2(x− x̄L) + µq

)
(10)

where µq and Σq are respectively the expectation and the co-
variance matrix associated to q. x̄L and Σ̄L are computed
thanks to Theorem 3.3. Thus, the sampling pdf q is shifted
and rescaled in order to get the same expectation and covari-
ance as the Laplace approximation of the posterior expecta-
tion and covariance.

Note that it is easy to sample according to q̃ defined by
(10), by shifting and scaling the sample X1, . . . , XN gener-
ated from q. The new weights are computed according to (7).
With this choice of importance pdf, the MC error can be dras-
tically reduced as illustrated in section 5.

As a perspective, we can use such a shifted–rescaled
importance pdf in sequential Monte Carlo algorithms, also
called particle filters (PF) (see [8] for a tutorial on PF). At
each correction step, the particles are sampled from (10),
with the empirical mean and covariance of the predictive dis-
tribution in place of µq and Σq. However, in PF, we cannot
evaluate the function q (because the pdf of the predictive dis-
tribution is unknown) to compute the weights (7), we can only
sample from it. The simplest solution consists in assuming,
for the computation of the weights only, that q is a Gaussian
pdf. Some preliminary results confirm the performance of
this solution.

5. ILLUSTRATION EXAMPLES

5.1. Optimal IS on a simple example

Consider the one-dimensional posterior pdf p(x) ∝ x2e
− x2

2σ2
q .

We set q(x) = 1√
2πσq

e
− x2

2σ2
q and g(x) = x2 in (1). Consider

the shifted and rescaled importance pdf q̃(x) = 1√
2πσ

e−
(x−µ)2

2σ2 .
The optimal shifting and rescaling parameters in this case are
µopt = 0 and σopt =

√
3σq (see figure 1), in the sense that

they minimize V (q̃) (which is then equal to 0.5/N ). These
values coincide with the posterior expectation and standard
deviation.

5.2. Triangulation

Let X = (X1, X2)T be the unknown position of a target in
the Cartesian plane. The azimuths Y0 and Y1 of the target
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Fig. 1. Shifted and rescaled IF. p (black), q̃ (green), q̃opt with
µopt and σopt (red).

are measured by two passive sensors, with positions s0 =
(s0,1, s0,2)T and s1 = (s1,1, s1,2)T . The observation model
is

Y =
(

Y0

Y1

)
=

(
arctan X2−s0,2

X1−s0,1

arctan X2−s1,2
X1−s1,1

)
+ W,

with W ∼ N (0, σ2I2). X admits a Gaussian prior pdf with
mean mX and covariance matrix QX .

We aim at estimating the posterior expectation x̄ and co-
variance Σ̄ with IS (9) and with the Laplace method (4)–(5),
and comparing their performance. The root mean squared er-
rors (RMSE) E[‖x̄− x̃‖2]1/2 and E[‖Σ̄− Σ̃‖2]1/2 are empir-
ically computed over 100 MC runs, for x̃ = x̄N and Σ̃ = Σ̄N

(IS), and for x̃ = x̄L and Σ̃ = Σ̄L (Laplace method). We
also compute the RMSE of the MAP x̂, which is needed to
compute the Laplace approximations.

The simulation parameters are σ = 1◦, s0 = (0, 0)
(m), s1 = (0, 50) (m), mX = (2000, 3000) (m) and
QX = 10002I2 (m2). The true values x̄ and Σ̄ are com-
puted by numerical integration. Results are shown on figure
2. For both the posterior expectation and covariance, it can be
seen that a very large number of particles (> 105) is needed
for the IS approximation to outperform the Laplace approxi-
mation. Besides, the ”offset” observed on the RMSE of the
MAP x̂ shows that the posterior pdf p is asymmetric in this
model. This asymmetry is quantified in formula (4) by the
second term.

6. CONCLUSION

We provide multidimensional Laplace formulas to compute
the posterior expectation and covariance matrix in a nonlinear
Bayesian context. Based on this formula, a method to design
an importance pdf is proposed. This density is obtained by
shifting and rescaling the sampling pdf in order to reduce the
Monte Carlo error. Numerical experiments on simple exam-
ples illustrate the accuracy of this method.

(a) RMSE of x̄N (black), x̄L (green) and of x̂ (red) vs. N .

(b) RMSE of Σ̄N (black) and of Σ̄L (green) vs. N .

Fig. 2. The Laplace method compared to IS for an increasing
number of particles.

Appendix

Proof of theorem 3.3. Let us first derive the Laplace approxi-
mation x̄L of the posterior expectation. We have (ML)′(a) =
∂ML

∂x̃
dx̃
da + ∂ML

∂a and therefore

x̄L =
[
∂ML

∂x̃
(x̃ = x̂)

dx̃

da
(a = 0) +

∂ML

∂a
(a = 0)

]T

.

First of all, ∂ML

∂a = ML(a)x̃(a)T , so that ∂ML

∂a (a = 0) =
x̂T , since x̃(0) = x̂ according to (3). Besides,

∂ML

∂x̃
=

det[Ĵ ]1/2

p(x̂)
∂

∂x̃

(
eaT x̃p(x̃)

det[J(x̃)]1/2

)
,

with

∂

∂x̃

(
eaT x̃p(x̃)

det[J(x̃)]1/2

)

= aT eaT x̃p(x̃)+eaT x̃p′(x̃)
det[J(x̃)]1/2 + eaT x̃p(x̃) d

dx̃

(
1

det[J(x̃)]1/2

)
= aT eaT x̃p(x̃)+eaT x̃p′(x̃)

det[J(x̃)]1/2 − 1
2

eaT x̃p(x̃)
det[J(x̃)]1/2 vec(J(x̃)−1)T J ′(x̃)
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so that, ∂ML

∂x̃ (x̃ = x̂) = − 1
2 vec(Ĵ−1)T Ĵ ′. Moreover, (3)

implies that ϕ(a) := a + ∂ log p
∂x (x̃(a)) = 0 for all a, so that

dϕ

da
=

∂ϕ

∂x
(x̃(a))

dx̃

da
+

∂ϕ

∂a
= −J(x̃(a))

dx̃

da
+ Id = 0,

which gives dx̃
da = J(x̃(a))−1. Finally,

x̄L = (ML)′(0)T = x̂− 1
2
Ĵ−1Ĵ ′T vec(Ĵ−1).

The sketch of the proof to derive the Laplace approximation
Σ̄L of the posterior covariance is given here. The detailed
proof is available from the first author. We have

(ML)′′(a) =
d

da

(
∂ML

∂x̃

dx̃

da

)
+

d

da

(
∂ML

∂a

)
=

[
dx̃

da

]T
d

da

(
∂ML

∂x̃

)
+
(

Id ⊗
∂ML

∂x̃

)
d2x̃

da2

+
d

da

(
∂ML

∂a

)
,

where d
da

(
∂ML

∂x̃

)
= ∂2ML

∂x̃2
dx̃
da + ∂2ML

∂a∂x̃ and d
da

(
∂ML

∂a

)
=

∂2ML

∂x̃∂a
dx̃
da + ∂2ML

∂a2 , so that

(ML)′′(a) =
[
dx̃

da

]T
∂2ML

∂x̃2

dx̃

da
+
(

Id ⊗
∂ML

∂x̃

)
d2x̃

da2

+
[
dx̃

da

]T
∂2ML

∂a∂x̃
+

∂2ML

∂x̃∂a

dx̃

da
+

∂2ML

∂a2
.

The calculation of the four terms of the sum yields:

• dx̃

da
(a = 0)

∂2ML

∂x̃2
(a = 0, x̃ = x̂)

dx̃

da
(a = 0)

= −Ĵ−1 +
1
4
Ĵ−1Ĵ ′T vec(Ĵ−1) vec(Ĵ−1)T Ĵ ′Ĵ−1

+
1
2
Ĵ−1Ĵ ′T (Ĵ−1 ⊗ Ĵ−1)Ĵ ′Ĵ−1

− 1
2
Ĵ−1

(
Id ⊗ vec(Ĵ−1)T

)
Ĵ ′′Ĵ−1,

•
(

Id ⊗
∂ML

∂x̃
(x̃ = x̂)

)
d2x̃

da2
(a = 0)

=
1
2

(
Id ⊗ vec(Ĵ−1)T Ĵ ′

)
(Ĵ−1 ⊗ Ĵ−1)Ĵ ′Ĵ−1,

•
[
dx̃

da
(a = 0)

]T
∂2ML

∂a∂x̃
(a = 0, x̃ = x̂)

+
∂2ML

∂x̃∂a
(a = 0, x̃ = x̂)

dx̃

da
(a = 0)

= 2Ĵ−1 − 1
2
(Ĵ−1Ĵ ′T vec(Ĵ−1)x̂T

+ x̂ vec(Ĵ−1)T Ĵ ′Ĵ−1),

• ∂2ML

∂a2
(a = 0) = x̂x̂T .

After summing these four terms, we obtain (ML)′′(0),
and Σ̄L is given by Σ̄L = (ML)′′(0)− x̄L(x̄L)T .
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