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ABSTRACT

In this paper we address the problem of estimating the in-
teraction matrices of PARALIND decomposition. In general,
this is an ill-posed problem admitting an infinite number of
solutions. First we study the gain of imposing sparsity con-
straints on the interaction matrices, in terms of model identifi-
ability. Then, we propose a new algorithm (S-PARALIND) for
fitting the PARALIND model, using a /5 — ¢1 optimization step
for estimating the interaction matrix. This new approach pro-
vides more accurate and robust estimates of the constraint ma-
trices than ALS-PARALIND, thus improving the interpretabil-
ity of the PARALIND decomposition.

Index Terms— PARAFAC, linear contraints, PARALIND/
CONFAC, sparse, ALS-PARALIND, S-PARALIND

1. INTRODUCTION

PARAFAC-based methods [1, 2] are presently standard tools
for factor or component modeling in various domains such as
psychometry, spectroscopy, signal processing or telecommu-
nications systems. A general overview of PARAFAC applica-
tions can be found in [3, 4]. The PARAFAC decomposition of
aX (I x J x K) 3-way array (or tensor) into R rank-1 terms
is given by

R
X:Zarobrocr, e

r=1
where a,(I x 1), b.(J x 1) and c.(K x 1) are vectors
and “o” denotes the outer vector product. For simplicity, the
noise/error term in (1) is ignored at this point of the presenta-
tion. The three dimensions of X are referred to as “modes”.

An alternative notation for (1) is

X =[A,B,C], @)

where A = [a;...ag|,B=[b;...bgland C = [c; ...cpg]
denote the component matrices. The mode-1 matrix unfold-
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ing of the PARAFAC model (1) is given by
X; =A(CoB)T, 3)

with ©® the Khatri-Rao product of two matrices. The mode-
2 and the mode-3 unfolding matrices, X5 and X3, can be
obtained by switching A, B C in (3).

In some applications, prior knowledge on the existence of
linear dependencies between the columns of the component
matrices is available. This information can be explicitly taken
into account by introducing some constraint (or interaction)
matrices ¥(R; x R), ®(R2 x R), 2(R3 X R), containing the
linear dependency patterns between the columns of A, B, C,
respectively. Thus, instead of [A, B, C] the decomposition is
given by

X = [A¥,B®,CQ], 4)

with A(I x Ry), B(J x Ry) and C(K x Rs) full column
rank matrices. This type of decomposition was introduced
in [5] and previous versions, and named PARALIND'. A
slightly different version, CONFACZ, with the constraint ma-
trices having canonical vectors as columns, was proposed
in [6, 7]. In order to illustrate PARALIND model we con-
sider a simple example, similar to those given in [5]. Sup-
pose that the columns of the first component matrix A are
[a; ay; a3 ay as aj; +ap|. Then, PARALIND ex-
presses A as the matrix product of A = [a; a, ag] and
the interaction matrix

100 0 01
=101 01 01 )
0 01 010

In general, the algorithms for fitting the PARALIND model
assumes that the constraint matrices are a priori known.
However, this is not always the case in practice. Moreover,
in some real life applications it may be of practical interest
to estimate these constraint matrices, as they provide im-
portant information on the interactions between the physical
mechanisms generating the data. A blind alternating least
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squares (ALS) estimator for the PARALIND model, referred
to as ALS-PARALIND, was proposed in [5]. However, for
identifiability reasons (as explained in the next section), the
interaction matrices estimated by this approach are highly
dependent on the algorithm initialization, which limits their
practical utility.

In this paper we propose a blind approach for estimating
the interaction matrices of the PARALIND model that imposes
sparsity of the elements of these matrices. This new approach,
called S-PARALIND, when compared to the ALS-PARALIND
algorithm, yields more robust estimates of the constraints ma-
trices. Moreover, it also improves the interpretability of the
decomposition since the linear dependencies are expressed
using a small number of interacting components. The remain-
der of this paper is organized as follows: in section 2 identifi-
ability issues of PARAFAC and PARALIND are addressed; sec-
tion 3 introduces the S-PARALIND algorithm and some results
on synthetic data are given in section 4. Finally, conclusions
are drawn in section 5.

2. IDENTIFIABILITY OF PARAFAC AND
PARALIND MODELS

A model is said identifiable if all its parameters can be
uniquely estimated from the data, up to some trivial inde-
terminacies. Thus, in this paper, identifiability can be under-
stood as a uniqueness problem. For example, the PARAFAC
model given by (2) is identifiable if the matrices A, B, C
can be uniquely estimated from X up to simultaneous col-
umn permutation and column-wise rescaling. An attractive
feature of this decomposition is its identifiability under mild
conditions. The most well-known PARAFAC identifiability
condition is due to Kruskal [8] and states that the decomposi-
tion in (3) is unique if

ka + kB +kc > 2R+ 2, (6)

where k() denotes the Kruskal-rank® of a matrix.

Following [5], identifiability of the PARALIND model is
essentially the same as that of the PARAFAC model. Mean-
while, if the interaction matrices are fixed and known, identi-
fiability conditions specific to PARALIND can be found in [9].
If these interaction matrices are not known, the identifiability
problem can be much more complicated. In particular, it may
happen that only some components of the three matrices or
only one matrix (among the three) are identifiable, resulting
in the so-called partial uniqueness or uni-mode uniqueness
results. The interested reader is referred to [10] for details.

Let us now assume that the uniqueness of matrix A is ful-
filled and that we aim at estimating the constraint matrix ¥
together with the full column rank matrix A. The identifiabil-
ity of ¥ and A comes down to the uniqueness of the bilinear

3The Kruskal-rank of a matrix A is the maximum number ¢ such that
every £ columns of A are linearly independent.
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decomposition A = AW. Without any further constraints,
such a decomposition is not unique since an alternative de-
composition can be obtained as

A=AV = (AT ) (T¥)=A"¥,

for any non-singular matrix T. In this paper we propose to
impose sparsity on the constraint matrix ¥ which should have
a minimum number of non-zero entries. This comes down to
explaining the rank deficiency of matrix A by considering the
the simplest dependency pattern between its columns. This
problem is somewhat connected with the problem of dictio-
nary identification using sparse matrix factorization, which
has been intensely studied lately in different papers such as
[12]. However, the main difference with these approaches is
the fact that the problem addressed in this paper considers
only full column rank dictionaries. Therefore, the proposed
approach is somewhat closer to sparse singular value decom-
position methods [13]. As we do not dispose of any definitive
result on the uniqueness of the decomposition using this kind
of sparsity constraint, we consider next some examples to il-
lustrate the purpose. Let A be given by

A = [a; ay a3 a;+aj (7N
1 0 0 1

= [al as ag} 01 0 1 (8)
0 010
= [aj+ay; a;+az ap+ag]
12 1/2 -1/2 1

12 —1/2 1/2 0 9)
~1/2  1/2  1/2 0

As illustrated by (8) and (9), it appears that the sparsest
matrix W is obtained by selecting ; independent columns of
A to form A. It is worth noting that imposing sparsity of ¥
does not ensure the uniqueness of the bilinear decomposition.
For example, another possible decomposition of A is

1
a; + ag] 0
0

-1 0 0
A=la; aj 0 1 0. (10)
1 0 1
One can see that ¥ matrix in (10) has the same sparsity de-
gree as the one in (8). From an interpretation point of view,
there is no reason to favor either decomposition (10) or (8)
since the number of non-zero entries in the constraint matrix
is the same in both cases. However, if some additional phys-
ical arguments are available, then the number of possible so-
lutions can be reduced. For example it is possible to impose
both sparsity and positivity of the entries of the ¥ matrix to
ensure uniqueness of the bilinear decomposition. The reader
may consult [11] for a discussion on this topic.



3. A SPARSE PARALIND ALGORITHM
(S-PARALIND)

In this section, we present an algorithm (S-PARALIND) for
estimating the PARALIND model with sparse constraints on
the interaction matrix. This algorithm is currently imple-
mented for estimating linear dependencies in one mode only,
i.e. mode-1, but the extension to two or three modes simulta-
neously is straightforward.

In the presence of noise or model errors, evaluating ¥
from a PARAFAC estimate of A (as presented in the previous
section) is not judicious because of the error accumulation
effect. Therefore, in [5] the constraint matrix is estimated
directly within the main ALS loop for updating the PARAFAC
matrix components. The approach presented in this section
is based on the algorithm proposed in [5] with the difference
that the LS estimation step of W is replaced by the following
{9 — {1 optimization problem [14]

min [|X; ~A¥(COB)T3+A®], A
where the hyperparameter A controls the sparsity degree of
the constraint matrix. The minimization in (11) can be formu-
lated as a LASSO problem for which a number of efficient al-
gorithms have been developed lately (see [15] and references
therein). Table 1 illustrates the main steps of the proposed
approach, where vec(.), ® and “ % ” denotes the matrix vec-
torization operator, the Kronecker product and the Hadamard
(element wise) product, respectively. For simultaneous linear
dependencies in all the three modes, each of the steps 4 and 5
in table 1 should be replaced by two other steps (analogous to
steps 2 and 3).

Input : X, \, R, R,

1: 1Initialize A,B,C
2:  vecW = arg min{||vecX; — [(C ® B) ® A] vec¥||3
v

FAlvec® |}

3: A=X,(CoB)¥ {¥[B"B)«(CTC)w"}
B = X,[C o (AW)] [(@TATA\II) % (CTC)] B

C=X3Bo(AT) [(@TATA\I:) « (BTB)] B

6: If stop condition not satisfied,
go to Step 2

Output Estimated A,¥,B,C

Table 1. S-PARALIND algorithm

Steps 3 — 5 in Table 1 are similar to ALS-PARALIND al-
gorithm presented in [5]. In the next section we compare S-
PARALIND with ALS-PARALIND on synthetic examples.

4. RESULTS

In this section, we aim at illustrating the benefit of includ-
ing a sparsity constraint in the estimation of the ¥ matrix.

841

To that end, we simulated a positive data array X of size
700 x 30 x 30 that mimics spectroscopy data. In order to
improve the uniqueness properties of the PARALIND decom-
position as well as result interpretability, we also imposed
non-negativity constraints on the estimated modes. In S-
PARALIND, to solve the /5 — £1 optimization problem of step
2 in table 1, the LASSO implementation 4 of [14] was used.
The results provided by S-PARALIND are compared with
those of ALS-PARALIND. In all the experiments the number
of sources was set to R = 4 and the number of columns of
matrix A to R, = 3. The same initializations, non-negativity
constraints and number of iterations were used for both algo-
rithms. The columns of the simulated matrices A, B and C
are depicted in Fig. 1.

In a first example the constraint matrix is given by

1000
=010 1 (12)
0010

In this case, the k-rank of A equals 1, implying the non-
uniqueness of the PARAFAC decomposition. However, the
uni-mode uniqueness conditions in [10] state that the first
mode matrix is still identifiable. Meanwhile B and C are
subject to rotational ambiguities which, due to the positive
offset (background), are not resolved by the non-negativity
constraints. Figure 2 and 3 show the three modes estimates for

5 0 15 E]
Mode 3

Fig. 1. Simulated data

ALS-PARALIND and S-PARALIND, respectively. One can ob-
serve that the S-PARALIND estimates are more accurate than
ALS-PARALIND for the first mode. However, for both algo-
rithms, the estimated components of B and C present artifacts
that are typical for rotational indeterminacies. The effect of
the sparse constraints can be clearly seen on the estimated
constraint matrices

4 Available at http://www.di.ens.fr/ mschmidt/
Software/lasso.html



R 1 0 0 0
s parauo = | 0 1 0.008 1 |, 13)
0 0 1 0
R 1 0.591 0.155 0.59
W 4r5—paraLinp = | 0.003 1 0.103 1 . (14)
0.004 0.157 1 0.156
2|

Fig. 2. Results of ALS-PARALIND for the first example

Fig. 3. Results of S-PARALIND for the first example

In a second example matrix W is fixed to

100 1
=010 1 (15)
0010

In this case, ko = 2 and the PARAFAC uniqueness is
achieved, resulting in a unique estimation of all the three
matrices A, B and C. As one can see in fig. 4 and fig. 5,
there are no more ambiguities in the estimation of modes 2
and 3. However, in this case also, imposing sparse constraints
on W yields better estimation of the first mode component
matrix and constraint matrix

842

1 0 0 0.749
s parann = | 0171 1 0024 1 |, (16
| 0 0 1 0
1 0468 0006 1
W 4r5_paraup = | 0.014 1 0.007 0.569 |. (17)
[ 0.071 0401 1  0.276
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Fig. 4. Results of ALS-PARALIND for the second example

15
Mode 3

Fig. 5. Results of S-PARALIND for the second example

Next we present the results of the S-PARALIND study of
the response of a bacterial biosensor to a varying concentra-
tion of IPTG (isopropyl 3-D-1-thiogalactopyranoside). The
employed biosensor is a bacteria genetically modified to pro-
duce two fluorescent proteins when exposed to IPTG. A same
gene (lacZ) of the bacteria is instrumented by two other genes
encoding the synthesis of different fluorescent proteins. As
the production of these fluorescent proteins is controlled by
the same gene, they have the same response to IPTG concen-
tration variation, resulting in collinearities in the associated
PARAFAC model (mode 1). The second diversity, necessary
to source separation, is provided by the spectral mode, each



source having a different fluorescence spectrum. The third
diversity in the data is created by considering the time evolu-
tion of the fluorescence, as each source has a different matu-
ration time. In other words, the time between the beginning
of the synthesis of the protein and the beginning of the flu-
orescence light emission is different for each protein. The
analyzed data contains spectral measurements (between 450
and 600 nm with a step of 3 nm), performed every 45 minutes
after an initial time lapse of 1 hour, for 6 different IPTG con-
centrations. Figure 6 shows the decomposition results of the
data using the S-PARALIND algorithm. The red and the green
sources correspond to the two fluorescent proteins, while the
blue source corresponds to the autofluorescence of the bac-
teria which is theoretically independent of time and ITPG
concentration. The first plot corresponds to the estimated
sources as a function of the concentration of IPTG. The other
two modes correspond to the estimated biosensor spectra and
temporal evolution of fluorescence, respectively. Because the
collinearity in the first mode, the red and the green sources are
theoretically subject to rotational indeterminacies in modes 2
and 3 (see [10]). This explains the partial overlapping of the
source spectra on the second plot, despite the non-negativity
constraints imposed in the estimation process. Further con-
straints, such as unmiodality, can be imposed to tackle this
indeterminacy problem. Nevertheless, the S-PARALIND de-
composition results comply with theory.

Relative fluorescence
ve fluor nce

Rel

10
IPTG concentration (mMol) Wavelength (nm)

Relative fluorescenc

50 100 150 200 250 300 350 400 450 500 55
Time (min)

Fig. 6. Results of S-PARALIND decomposition of the dataset.
5. CONCLUSIONS

In this paper, an approach has been proposed for estimat-
ing the constraint matrices in PARALIND models. First,
the identifiability of the PARALIND model has been inves-
tigated and we have provided some evidences showing the
interest of imposing sparsity of the constraint matrix. The
proposed S-PARALIND approach has been compared to the
ALS-PARALIND in two different cases: partially and fully
identifiable models. In both cases, the effectiveness of S-
PARALIND algorithm has been confirmed. Finally, the pro-
posed algorithm was applied on a real dataset resulted from
bacterial biosensors interaction with IPTG.
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