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ABSTRACT 
 

In natural hazards management applications Earth 

Observation (EO) image processing methods are based on 

segmentation and classification. The result primary consists 

of thematic maps which are readily interpretable. We 

propose a complete EO image processing chain, which 

generates an end product with increased information content 

organized in thematic layers. The processing chain 

integrates four main components: image classification, 

identification of high anomaly areas relative to the entire 

scene context, spectral and texture change detection, and the 

integration of different information layers. The processing 

chain was tested in a fire management scenario, using a pair 

of Landsat5-TM images for the Pagami Creek forest fire 

which was active from August to October 2011. 

 

Index Terms—Image anomaly/change detection, Natural 

hazards management, Information theoretical measures 

1. INTRODUCTION 

Remote sensing and digital processing of satellite images 

are geo-spatial tools that support various applications for 

natural disaster management. They stand at the basis of the 

development of a number of automated systems for the 

prevention of such phenomena. Satellite technological 

resources are constantly directed to monitor the weather 

status and geological events in order to anticipate potential 

hazards and to minimize their effects on people's lives. 

When the event occurs, a rapid, effective and reliable 

response of authorized institutions is essential. To this 

purpose, because generally the affected areas are hardly 

accessible, it is necessary to gather information remotely 

and satellite image processing provides an efficient solution 

in terms of cost and coverage. In this context, efforts are 

directed towards the development of automated methods to 

extract and process the information contained in satellite 

images. Typical Earth Observation (EO) image processing 

methods are based on segmentation and classification, 

resulting in thematic maps readily interpretable. In this 

paper we advance towards an integrated solution, which 

brings together several stages of data processing and aims at 

constructing a product organized on information layers. 

To this end, we propose a complete EO image processing 

chain, where the end product has increased information 

content, due to the fact that it is not just a thematic map, but 

the result of a vertical representation of informational layers.  

Each organization level gives a different category of 

descriptors, which makes the product easily adaptable to the 

application and the user. The basis of the processing chain is 

represented by a raw level, where the areas with the most 

interesting information content relative to the entire scene 

are identified. Climbing up the vertical representation of the 

product, more layers of information are added, comprising 

knowledge about the degree of change between image pairs, 

either spatial or spectral, up to the top level where the 

information is refined and the areas which are representative 

for a given application and hazardous event are precisely 

delineated. These areas are being associated a meaningful 

sense which is adaptable to the application in the sense that 

the user can pick which of the information layers are the 

most relevant. The processing chain thus integrates the 

following components (figure 1):  

a) A classification component that extracts the landcover 

types present in the scene  

b) An information theory based component, which exploits 

the relation between entropy and chaos for coarse 

delineation of areas of high anomaly relative to the entire 

scene information 

c) A change detection component that integrates spectral 

and textural changes occurring between two passes of the 

imaging sensor before and after the occurrence of the event 

d) A vector contour component that delineates the areas of 

interest and integrates the different information layers  

2. IMAGE PROCESSING CHAIN FOR 

INFORMATION RETRIEVAL 

This section describes the proposed processing chain, its 

component modules, and the interaction between the 

different levels of information. Typically, in disaster 

management applications, the employed data consists of a 

pair of satellite images of the affected area before and after 

the occurrence of the event risk hazard. There are certain 

requirements on the data that should be considered (remote 

sensing data, including airborne and spaceborne data, vary 

in spatial, radiometric, spectral and temporal resolution. 
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Thus, in addition to the user needs, one must also take into 

account the scale of the area, the data availability, 

characteristics, cost and time constraints). The proposed 

processing chain is applicable to average resolution images, 

due to the fact that as the resolution increases, the degree of 

heterogeneity of data is so high that the processing methods 

are much more specific. Moreover, it consists of a series of 

processing modules. Each of them helps users define 

symbolic models with several levels of abstract 

representation.  

2.1.  Image classification component 

The first processing level involves image classification. The 

classification is performed on the image pair, and gives a 

first identification of the regions that will be processed. 

Depending on the application, the classification can be 

computed in a multi-class approach (for the case where 

there are different categories of landcover that are affected 

by the risk event) or in a single-class approach, if the a 

priori data about the particular landcover is sufficient. The 

authors have employed the ISODATA algorithm due to the 

fact that it is less sensitive (for example as compared to K-

Means) to clusters which have varying variances. Since the 

analyzed data includes mostly forest pixels, clusters will 

tend to have elongated shapes which imply a high 

variability.  

2.2.  Anomaly detection component 

The second level of abstract representation refers to the 

retrieval and extraction of the regions that have significant 

information content relative to the scene context. To this 

end, one must define the term “significant”. When the risk 

event occurs, it has a visible effect on the scene content. If 

we consider the initial scene to be the input of a system 

characterized by the event model, the information 

transmitted through the system is affected. Thus, the areas 

of interest will break the scene pattern. This process of 

retrieving the areas that are “interesting” for the 

understanding of the event is called “anomaly detection”. A 

domain that ensures suitable measures to describe image 

information content considering probabilistic measures is 

information theory. Considering the gray levels of pixels in 

the image as particular realizations of a random variable the 

probability density function of the variable determines the 

amount of image information. Further mutual information is 

used to describe the relationship between two random 

variables (features space and class space) and Kullback 

Leibler divergence to reveal differences between the two 

probability density functions [1]. In the probabilistic 

framework the amount of information represents 

uncertainty. Given the image as a discrete random variable, 

Shannon’s entropy is the average amount of information: 

 ���� = −∑ ��	
� ��
 ��	
��

   (1) 

Mutual information is defined as the difference: 

���, �� = ���� − ���|�� = ∑ ∑ ��	
 , ����� log
����,� �

�������� �
  (2) 

It takes into account the dependence between variables. Our 

goal is to make further use of the primitive feature 

extraction results of the first level to code the image 

information content. The image features reflects the physical 

parameters of the imaged scene.  From the generated content 

index obtained in the classification process the mutual 

information between image space and class space is: 

 ℑ��, "� = ∑ ∑ ��"
|�#
# ����#���

��$�|%&�

��$��
  (3) 

Where ��"
|�#� indicates the posterior probabilities of 

signal classes given a certain image tile	�# (~ 90 x 90 pixels 

per tile) from the image. Prior probabilities for signal classes 

and images are given by ��"
� and ���#� respectively.  This 

measure indicates the information transmitted from image 

data through feature extraction and unsupervised clustering 

to the class space. Further based on Kullback Leibler 

divergence once can compute the information between 

image space and class space. The  KL divergence is applied 

to determine “the complexity” of a single image tile relative 

to the entire image. 

 (��, )� = ∑ ∑ ��"
|�#���

��$�|%&�

*�$��

#  (4) 

It shows how much a single image tile 	�#  is a typical 

mixture of the complete image content. Fig 4 depicts the 

anomaly map as resulted from KL divergence, considering 

	�#  an image tile (200 x 200). Smaller tile dimensions 

increase the accuracy of the delimited area characterized as 

“significant” post risk event. 

2.3.  Change detection component 

At this point we obtained a model of the scene with a higher 

degree of sensitivity. Next, we want to assign a meaning 

which is specific to the application. For this purpose, we 

advance to the third level of abstraction, in which the pair of 

images is used to detect changes. Our choice for this step 

was to construct the "change" pattern as a combination of 

spectral and texture representations. Change Detection is a 

measurement of the changes in informational topics 

contained within the data which allows for a specific 

description of the process that generated the change. 

Changes that occur after a risk event translate into 

differences in the geometry of the scene, as well as in 

spectral and texture differences.  

2.3.1. Spectral change detection 

To identify changes at the spectral level, we make use of an 

information theory method, based on the rationale that the 

negative of the logarithm of the probability of an amplitude 

level in one image conditional to the level of the same pixel 
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in the other image conveys information about the degree of 

spectral change. This a posteriori probability will likely be 

maximized where risk event had pronounced effects. The 

algorithm steps are presented in the next paragraph. 

First the local means at each pixel position are computed, 

using a �2� + 1�			�2� + 1�	window sliding over the 

images, where p is typically larger or equal to 5. The 

contribution of each pixel inside the sliding window is 

multiplied by normalized coefficients summing to �2p +
1�/ and decaying toward the edges with Gaussian slope. 

Next, the scatter-plot plane (of the filtered images) is 

partitioned into an �0	x	0� array of rectangular blocks, in 

order to get a 2-D histogram ℎ�3, 4�, where i matches the 

level of image g2 and j the level of image g1. Further on, the  

number of scatter-plots in each block is normalized to the 

overall number of points.  Next, a Gaussian-shaped filter is 

applied to the discrete normalized 2-D histogram and yields 

the discrete joint probability density function (PDF), which 

is used to compute the discrete conditional 2D-PDF [2]:  

 ��3|4� = ��
,��

����
= ��3, 4�/ ∑ ��3, 4�
  (5) 

The joint probability ��3, 4�	is scaled to its maximum along 

the column in order to make sure that there is no change (the 

logarithm is zero) when ��3, 4�	 attains this maximum. The 

rescaled conditional probability is: 

 )�3|4� = ��
,��

678� ��
,��
= ��
|�� ∑ ��
,���

678� ��
,��
 (6) 

Finally, the conditional information of g2 to g1 at �9, :�	is: 

 ;�9, :� = −log	�)�<
̅/�9, :�>|<
̅?�9, :�>��
 

(7)
 

2.3.2. Texture change detection 

Further on, we give a different interpretation to the risk 

phenomenon. If we consider the initial scene as an 

information source, the event "codes" the source, and the 

result is a secondary source with different entropy. Due to 

the fact that the Earth Observation images are usually 

governed by an intrinsic order, the existence of a natural 

disaster increases the degree of chaos in post-event satellite 

images. Thus, by exploiting the well known relationship 

between entropy and chaos, it becomes natural that the post-

event image entropy is higher, at least for the affected areas, 

as compared to the entropy of the initial source. Moreover, 

entropy is a measure of texture. We employ the Rényi 

entropy to describe the redundancy of the coded source as a 

measure of change. The Rényi entropy as a descriptive 

measure was used in multimedia as well as in remote 

sensing applications. [3] use local directional Rényi entropy 

to build a local image descriptor for image feature 

extraction. The authors use the measure of entropy to 

measure the local saliency of images and define a descriptor 

with invariant properties to transformations such as 

translation, rotation, scale, illumination, occlusion, 

deformation and viewpoint variation and apply the method 

on multimedia images for object recognition purposes. [4] 

use the Rényi entropy as a similarity metric for clustering 

applications. In information theory, the Rényi entropy is an 

extension of Shannon’s entropy through the relaxation of the 

additivity constraint. The Rényi entropy quantifies the 

diversity, uncertainty or randomness of a system: 

 �@��� =
?

?A@
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@B

C?   (8) 

 

Figure 1. Representation of information levels in processing chain 

In the above equation the parameter α is greater or equal to 

0 and it becomes obvious that when α=1 the Rényi entropy 

tends to the Shannon entropy. For a random variable X 

taking values with probabilities given by the p series, the 

Rényi entropy is a continuous positive decreasing function 

of α. Finally, we reach the top representation of information, 

in which the product is refined. For a precise delineation of 

the affected areas, a vectorization process is applied, which 

extracts the information related to the contour geometry of 

the area detected as abnormal or changed and overlays the 

vector file over the data. The overlay is performed on pre 

and a post event image, based on the GIS coordinates, for a 

better visualization and localization of the affected area. 

3. TEST SCENARIO - RESULTS ON FOREST FIRE 

EXTENT EVALUATION 

Our application is based on a forest fire scenario. Remote 

sensing images have been widely used for fire mapping, due 

to the fact that they provide a broad sight over wide areas. 

Burnt areas maps are usually extracted from the normalized 

vegetation index (NDVI), based on a combination of red and 

near-infrared bands, which reflect the green vegetation. The 

processing chain proposed in this paper however, is not 

limited to burnt area detection applications and the results 

presented are only explanatory, without loss of generality. 

On August 18, 2011, a large fire was ignited by lightning in 

the Pagami Creek forest, in Minnesota, USA (figure 2). 

Nearly 93,000 acres were damaged in this natural disaster 

that began in the Boundary Waters Canoe Area Wilderness, 

approximately 14 miles east of Ely, and lasted almost 3 

months. Landsat5-TM images were made available by Earth 
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Observatory [5], courtesy of the U.S. Geological Survey. 

The images have 30 m spatial resolution, and have been 

acquired on August 3 and October 6, 2011. 

Figure 2. Moderate Resolution Imaging Spectroradiometer (MODIS) 

on NASA’s Terra satellite image on 12.09.2011. The s

the fire is visible. The red ellipse marks the burnt area.

In the following we discuss the intermediary results 

processing chain, as well as the final product in which they 

are integrated. Figure 3 (left) depicts the original Landsat5

TM image in which the bands 7, 4, and 2 were chosen for 

representation. All bands have 30 m spatial resolution. We 

have chosen this representation of the data because it 

provides a natural-color rendition and penetrates 

atmospheric particles and smoke. Bright green represents 

healthy vegetation. Since the event occurred in late summer 

there is no heavy growth of vegetation and thus it does not 

 

Figure 3. Landsat5-TM image pre-event; 

 

Figure 4 Anomaly map; Abnormal area overlay on pre

], courtesy of the U.S. Geological Survey. 

, and have been 

2011.  

 

. Moderate Resolution Imaging Spectroradiometer (MODIS) 

The smoke trace from 

The red ellipse marks the burnt area. 

the intermediary results of the 

processing chain, as well as the final product in which they 

depicts the original Landsat5-

and 2 were chosen for 

All bands have 30 m spatial resolution. We 

have chosen this representation of the data because it 

color rendition and penetrates 

Bright green represents 

tation. Since the event occurred in late summer 

there is no heavy growth of vegetation and thus it does not 

appear saturated. Bare soil is represented by pink areas, 

while orange and brown indicate sparsely vegetated areas

The middle image in figure 3 depicts the post

the same combination of spectral bands. The fire appears 

red. This is a typical representation of Landsat5

for fire management applications and post

burnt/non-burnt areas.  

The rightmost image in figure 3 depicts the result of the first 

processing level, the classification of post

relevant classes. The healthy forest appears dark blue and 

green, lakes and water bodies/courses appear red, yellow 

depicts rocky areas and turquoise indi

by fire. Figure 4 presents the results of the second 

processing level. The left most image represents the coarse 

anomaly map. The post-event image was divided into 20 x 

20 regions. Each of the 400 image tiles were assigned an 

anomaly score, which was defined as the complexity of the 

tile relative to the entire image. Higher scores (lighter tones) 

indicate a higher complexity and thus mark the 

corresponding areas as "potentially interesting".

process leads however to a reduction 

detection, proportional to the size of the tile window.

most relevant tiles were retained by applying a threshold on 

the anomaly map. The rest of the tiles were discarded. This 

is indicated in the middle and rightmost images in figure 4, 

where the contour line of the "abnormal" region was marked 

onto the pre- and post-event images (previously converted 

into a single band).  

 

event; Landsat5-TM image post-event. Classification of post-event data ISOdata, 5 classes

 

Anomaly map; Abnormal area overlay on pre-event; Abnormal area overlay on post-

appear saturated. Bare soil is represented by pink areas, 

sparsely vegetated areas. 

icts the post-event data, in 

the same combination of spectral bands. The fire appears 

red. This is a typical representation of Landsat5-TM [6] data 

for fire management applications and post-fire analysis of 

gure 3 depicts the result of the first 

processing level, the classification of post-event data with 5 

relevant classes. The healthy forest appears dark blue and 

green, lakes and water bodies/courses appear red, yellow 

depicts rocky areas and turquoise indicates the area affected 

by fire. Figure 4 presents the results of the second 

processing level. The left most image represents the coarse 

event image was divided into 20 x 

20 regions. Each of the 400 image tiles were assigned an 

which was defined as the complexity of the 

tile relative to the entire image. Higher scores (lighter tones) 

indicate a higher complexity and thus mark the 

corresponding areas as "potentially interesting". This 

process leads however to a reduction of the resolution of 

detection, proportional to the size of the tile window. The 

most relevant tiles were retained by applying a threshold on 

the anomaly map. The rest of the tiles were discarded. This 

is indicated in the middle and rightmost images in figure 4, 

where the contour line of the "abnormal" region was marked 

event images (previously converted 

 

ISOdata, 5 classes 

 

-event 
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Figure 5. Textural change detection

Figure 6. Delineation of areas affected by textural change; delineation of areas affected by spectral change

 

Figure 5 depicts the change detection maps. The left image 

presents the textural changes (indicated by darker tones)

occurred between the two passes, while the image on the 

right refers to the spectral changes indicated by the lighter 

tones. The time lag between acquisitions is 2 months. Thus, 

although the most visible change is due to the fire, other 

changes can be visible that can be caused by differences of 

the water level around the lakes, as well as changes in the 

canopy. Figure 6 presents the contour lines of the changed 

areas. 

4. CONCLUSIONS 

This paper introduces an Earth Observation

processing chain applicable to medium resolution data.

processing chain integrates four main components: 

classification, delineation of areas of high anomaly relative 

to the entire scene information, spectral and textural 

detection, and vector contour line stacking

integration of different information layers. The 

chain was tested using a pair of Landsat5-TM images for the 

Pagami Creek forest, in Minnesota, for the assessment of the 

damage extent caused by a fire lasting form August to 

October 2011. The results show that the processing chain is 

suitable for effective risk management applications, 

providing the user with a reliable end product with 

complex layered informational structure. 

been conducted in the frame of the Exploratory Research 

Project PNCDI-II TOMOSAR, EL 10-12-01.

 

extural change detection map; Spectral change detection map  

 

elineation of areas affected by textural change; delineation of areas affected by spectral change on post

Figure 5 depicts the change detection maps. The left image 

(indicated by darker tones) that 

, while the image on the 

right refers to the spectral changes indicated by the lighter 

. The time lag between acquisitions is 2 months. Thus, 

ue to the fire, other 

changes can be visible that can be caused by differences of 

the water level around the lakes, as well as changes in the 

canopy. Figure 6 presents the contour lines of the changed 

servation image 

applicable to medium resolution data. The 

components: data 

delineation of areas of high anomaly relative 

spectral and textural change 

line stacking for the 

. The processing 

TM images for the 

, for the assessment of the 

a fire lasting form August to 

October 2011. The results show that the processing chain is 

suitable for effective risk management applications, 

providing the user with a reliable end product with a 

 This work has 

in the frame of the Exploratory Research 

01. 
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