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ABSTRACT 

 
This paper shows that the filtered-x Wiener filtering can be 
viewed as a linearly-constrained processing technique. For 
this purpose, the linearly-constrained Wiener filtering is 
formally introduced, as well as its GSC representation. As a 
result from this approach, a new set of linear constraints is 
defined and named as “convolution constraints”. Simulation 
results validate the proposed methodology. 
 

Index Terms— Filtered-x Wiener filtering, linearly-
constrained processing, convolution constraints 
 

1. INTRODUCTION 
 
Active control of sound and vibration is an important 
application area for adaptive signal processing [1], [2], [3]. 
The filtering scheme for interference cancellation is known 
as filtered-x Wiener filtering (FXWF), since the controller is 
a causal and finite-duration impulse response (FIR) filter, 
and the reference input signal can be viewed as the output 
signal of an unknown linear system. The most widely used 
adaptive filtering algorithm in such active control systems is 
the least-mean-square (LMS) algorithm with the reference 
signal processed by a linear filter. This filter seeks to 
compensate for the effects of the secondary path from the 
output of the controller to the cancellation point. Because of 
this special arrangement, the algorithm is termed filtered-x 
LMS (FXLMS) algorithm. Interpolated FIR (IFIR) filtering 
is another example that can be modeled as a FXWF scheme 
[4], [5]. 

Linear constraints are widely applied in the optimization 
of temporal and/or spatial filtering. In general, the 
constraints are used when the second-order moment of the 
Wiener filter desired response or even its discrete-time 
samples are not available. The linear constraints enforce 
characteristics to the desired response in order to achieve the 
filter optimization [6], [7], [8]. The linearly-constrained 
minimum variance (LCMV) is a criterion that directly 
minimizes the average power of the filter output to which the 
linear constraints are applied. This technique has been 
successfully applied to adaptive beamforming and spectral 
analysis [6], [7], [8], [9]. The LCMV method may be 

alternatively implemented using an indirect structure called 
generalized sidelobe canceller (GSC), which modifies the 
constrained minimization problem to an unconstrained one 
[10]. It has been shown that the direct form and the GSC 
structures are equivalent [11]. 

In this paper, we consider the linearly-constrained 
Wiener filtering (LCWF), and its GSC representation, in 
order to show that the filtered-x Wiener filtering (FXWF) is 
equivalent to a linearly-constrained filtering. A new set of 
linear constraints, named “convolution constraints”, is 
introduced, which can be directly imposed by either the 
constrained least-mean-square (CLMS) algorithm [6] or the 
constrained fast least-squares (CFLS) algorithm [12].  The 
FXWF-LCWF equivalence is illustrated by simulation. 
 
2. LINEARLY-CONSTRAINED WIENER FILTERING 
 
The LCWF problem may be stated as follows: 

minimize:             )}({)( 2 neEJ =w  

Rwwpw tt2 2 +−= dσ            (1a) 

subject to:                   fwC =t ,                                (1b) 

where e(n) is the estimation error defined as the difference 
between a desired response d(n) and the transversal filter 
output y(n). w=[w0 w1 … wN–1]t and x(n)=[x(n) x(n–1) … 
x(n–N+1)]t are, respectively, the N-by-1 tap-weight and tap-
input vectors of the (N–1)-order finite impulse response 
(FIR) filter. σd

2 denotes the variance of d(n), R the N-by-N 
correlation matrix of x(n), and p the N-by-1 cross-
correlation vector between x(n) and d(n). The N-by-K 
constraint matrix C and the K-element response vector f in 
(1b) establish the set of linear constraint equations imposed 
on the minimization of the mean-squared error (MSE). It is 
assumed that K<N and C is a full column rank matrix. 

Without loss of generality, all parameters and signals 
are assumed to be real-valued. Furthermore, both x(n) and 
d(n) sequences are modeled as wide-sense stationary zero-
mean Gaussian discrete-time stochastic processes. 

Fig. 1 illustrates the LCWF problem (1). The columns 
of C span a K-dimensional subspace C, called constraint 
subspace, in the N-dimensional vector space W  (plan of the 
sheet). Thus, matrix Ct in (1b) is a linear transformation 
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from vector space W  (domain space) into the vector space 
C  (image space) that maps the tap-weight vector w into f. 
Hence, all w satisfying (1b) terminate on a (N–K)-
dimensional hyperplane V  defined by V ={w:Ctw=f}, which 
is called constraint hyperplane. 

 

 

Fig. 1: Constraint and orthogonal constraint subspaces. 
 
The homogeneous equation corresponding to (1b), 

0wC =t ,                                     (2) 
defines a second (N–K)-dimensional hyperplane C⊥, which 
is orthogonal to the constraint subspace and passes through 
the origin (Fig. 1). This hyperplane is called orthogonal 
constraint subspace or orthogonal complement subspace. 

Solving the linearly-constrained minimization problem 
(1) using Lagrange multipliers yields the optimal solution: 

)()( 1t11t11 pRCfCRCCRpRw −−−−− −+=o  
QfPwQew +=+= unccunc ,                           (3) 

with 
P=I–QCt,                                    (4) 

where wunc=R–1p is the unconstrained Wiener filter [13] and 
Qec is a modification imposed on wunc to satisfy the 
constraints (see Fig. 1). Q=R–1C(CtR–1C)–1 is a linear 
transformation applied to the K-dimensional constraint error 
vector ec=f–Ctwunc. Because ec is an affine transformation on 
wunc, the imposition of constraints on the Wiener filtering 
scheme introduces a bias Qec on the solution. Note that the 
N-by-K matrix Q is also dependent on R, a consequence of 
the fact that it results from the minimization of the MSE. 
Finally Q is a right pseudoinverse of Ct as CtQ=I. 

Premultiplication of any vector by P annihilates any 
components in the constraint subspace spanned by the 
columns of C. Thus, Pwunc keeps only the part of wunc 
orthogonal to this subspace. The bias term Qf satisfies the 
constraints and, consequently, terminates on the constraint 
hyperplane (Fig. 1). It corresponds to the optimal solution of 
the LCMV filter for the same set of constraints (1b). As the 
LCMV does not work with a reference (desired) signal, the 
imposition of constraints on its parameters leads to a non-

elementary optimal solution. When the LCMV problem is 
transformed into the LCWF problem by the presence of d(n) 
as in Fig. 1, the optimal LCMV filter is corrected taking into 
account the cross-correlation between x(n) and d(n). 

The minimum MSE is given by 

ccuncmin JJ eCRCe 11tt )( −−+= ,                 (5) 
where 

uncduncJ wp t2 −= σ                           (6) 
denotes the minimum MSE produced by the unconstrained 
Wiener filter [13]. Thus, the second term in (5) can be 
viewed as an excess mean-squared error due to the 
constraints. 

The expression for the estimation error at time n when 
the filter operates in its optimum condition is given by: 

cunco nnndne Qexwx )()()()( tt −−= .               (7) 
Pre-multiplying both sides of the above equation by x(n) and 
taking the expected value, we get the result 

co nenE eCRCCx 11t )()}()({ −−−= .                  (8) 
It means that the orthogonality principle does not apply to 
the linearly-constrained optimal Wiener filtering problem, 
since the unconstrained optimal Wiener filter does not 
satisfy the constraints (ec≠0). Thus, the minimum error 
signal eo(n) is correlated with the input signal samples x(n). 
The constraints prevent the filter from attaining the 
minimum MSE of the unconstrained optimal Wiener filter. 
From (8), we also have that 

coo nenyE eCRCf 11tt )()}()({ −−−= ,                  (9) 
where yo(n) denotes the output produced by the optimal filter 
wo at time n. 

For the LCMV filtering case, we obtain from (5) that 
the minimum average output power of the filter is given by: 

fCRCf 11tt )( −−=LCMVJ ,                           (10) 
and that 

fCRCCx 11t )()}()({ −−=nynE o .                     (11) 
The direct LCWF structure can alternatively be 

implemented via GSC as represented in block diagram form 
in Fig. 2. 

 
Fig. 2: GSC representation of LCWF. 

The coefficient vector 
q=C(CtC)–1f                               (12) 

represents a filter that satisfies the constraints (Ctq=f), called 
quiescent filter. It depends only on the constraints and 
corresponds to the minimum-norm solution (Fig. 1) of the 
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underdetermined system in (1b), obtained from the right 
pseudoinverse of Ct: 

(Ct)+=C(CtC)–1.                            (13) 
In contrast, the (N–K)-element vector w⊥ is an unconstrained 
filter in the orthogonal constraint subspace C⊥ and provides 
the degrees of freedom in the MSE minimization. The 
column vectors of the N-by-(N–K) matrix C⊥ span the 
subspace C⊥ and represent a basis for the orthogonal 
complement of the subspace spanned by columns of C 
(CtC⊥=0KxN–K). Together the column vectors of C and C⊥ 
span the entire N-dimensional space W . C⊥ is termed the 
signal-blocking matrix in the sense of rejecting the signal in 
the pass-band of q. 

Now, the error signal is given by: 
)()()()( t nndne xwCq ⊥⊥−−= .                (14) 

In the mean-square-error sense, the vector w⊥ is chosen to 
minimize the following cost function: 
                 +−−= ⊥⊥⊥ pwCqw t2 )(2)( dJ σ  

)()( t
⊥⊥⊥⊥ −−+ wCqRwCq             (15) 

The optimum solution is 
)()( t1t pRqCRCCw −= ⊥

−
⊥⊥⊥o                   (16) 

and 
oGSCo ⊥⊥−= wCqw .                          (17) 

Substituting (16) in (15) yields the minimum MSE of the 
GSC representation in Fig. 2: 

qpwpRq tt2 )( −−+=
oGSCdGSCJ σ .               (18) 

When the GSC operates in its optimum condition, the 
expression for the estimation error at time n is given by 

oo nnndne ⊥⊥+−= wCxqx )()()()( tt .            (19) 
Pre-multiplying (19) by x(n) and taking the expected value 
yields 

)()}()({ qpPx −= ⊥nenE o ,                   (20) 
where 

t1t )( ⊥
−

⊥⊥⊥⊥ −= CRCCRCIP .                 (21) 
Based on (20), it is also verified that the orthogonality 
principle does not apply to the GSC representation of 
LCWF. However, checking in the GSC structure the 
orthogonality between x⊥(n) and eo(n), it is easily verified 
that: 

0x =⊥ )}()({ nenE o .                           (22) 
So, from the point of view of w⊥, the MSE minimization is 
unconstrained and the orthogonality principle does now 
apply. From (22), we also have that 

0=⊥ )}()({ nenyE oo ,                          (23) 
where y⊥o(n) denotes the output produced by the optimal 
filter w⊥o at time n. 

Both the direct form and GSC structures of LCWF are 
equivalent. This can be proved by showing that wo=wGSCo, 
or: 

1tt1t11t1 )())(()( −
⊥

−
⊥⊥⊥

−−− −= CCCRCRCCCICRCCR  (24) 
and 

t1t1t11t1 )())(( ⊥
−

⊥⊥⊥
−−−− =− CRCCCRCCRCCRI . (25) 

The veracity of (24) has already been proven in [12], since 
Buckley’s sufficient conditions are verified, i.e. Ct

⊥C=0 and 
rank(C⊥)=N–K. Now, post-multiplying both sides of (25) by 
RC(CtC)–1 leads to the equality in (24). It also means that 
Jmin in (5) is equal to JGSC in (18). 

It is worth noting that the equivalence between the 
direct form and its GSC representation for LCMV filtering 
has been well studied. However, the linearly-constrained 
Wiener filtering scheme has not been formally displayed in 
the literature. This allows us to see filtered-x Wiener 
filtering as a linearly-constrained filtering. 
 

3. FILTERED-X WIENER FILTERING 
 
Fig. 3 illustrates the filtered-x Wiener filtering problem in 
block diagram form using vector notation. The request is to 
find the filter h that minimizes the estimation error e(n) in 
the mean-square sense. 

 
Fig. 3: Filtered-x Wiener filtering 

The filter w arises from the convolution of a predefined 
filter s=[s0 s1 … sL–1]t and the unknown filter  h=[h0 h1 … 
hM–1]t: 

w=Sh,                                    (26) 
where S is a N-by-M non-symmetric Toeplitz matrix having 
the vector [st, 0t

N–L]t as its first column and the vector [s0, 
0t

M–1] as its first row (N=L+M–1). For instance, S has the 
following form for M=5 and L=3 (N=7): 
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By inspection, S is a full column rank matrix with rank equal 
to M. Note that the reference signal vector xh(n) of filter h is 
a filtered version of x(n) by filter s: 

xh(n)=Stx(n),                               (28) 
giving rise to the name filtered-x Wiener filtering for the 
scheme in Fig. 3. 
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Comparing Fig. 3 with Fig. 2, we can visualize the filtered-x 
Wiener filtering as a linearly-constrained Wiener filtering 
employing the GSC structure. For the case in point: q=0, 
C⊥=S and w⊥=–h (K=N–M=L–1). Substituting 0 for q and 
C⊥ for S in (16) and (18) leads, respectively, to the optimal 
solution and to the minimum MSE: 

pSRSSwh t1t )( −
⊥ =−= oo                    (29) 

and 

oGSCdGSCJ wp t2 −=σ ,                       (30) 
where 

pSRSSSw t1t )( −=
oGSC .                     (31) 

So, what is the set of linear constraints that imposes the 
above condition? Naturally, the answer for this question 
corresponds to determine the N-by-(L–1) constraint matrix C 
and the (L–1)-element response vector f in (1b). 
When visualizing the FXWF (Fig. 3) as a LCWF-GSC 
structure (Fig. 2), we have verified that q=0. So, based on 
(12), we can conclude that f=0. Since the filter w must 
satisfy the constraints, we have the set of linear constraint 
equations: 

Ctw=0,                                   (32) 
which corresponds to the homogeneous system in (2). It 
means that any solution w (there are infinite solutions) lies 
in the M-dimensional null space (or kernel) of the linear 
transformation Ct, and such a set of linear constraints 
imposes the implicit convolution condition on the filter w, 
but only one solution minimizing the MSE. 

As far as the constraint matrix C is concerned, let us 
start remembering that 

CtS=0L–1xM.                               (33) 
Now, making use of the singular value decomposition 
(SVD) of matrix S, and taking into account that it is a full 
column rank matrix (rank equal to M), we have that: 









=

− ML

M

x1

t

0
Σ

SVU ,                          (34) 

where ΣM is a M-by-M diagonal matrix whose diagonal 
elements correspond to the M singular values of S, σ1 ≥ σ2 ≥ 
… ≥ σM  > 0, i.e. ΣM = diag(σ1, σ2, …, σM). U=[u1 u2 … uN] 
and V=[v1 v2 … vM] are N-by-N and M-by-M unitary 
matrices (UtU=I and VtV=I), respectively. From (34), it 
results that 









=

− ML

M

x1

t
t

0
VΣ

SU .                            (35) 

Partitioning the unitary matrix [ ]21 UUU = , where U1=[u1 
u2 … uM] and U2=[uM+1 uM+2 … uN], (35) becomes 





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


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
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− ML

M

x1
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.                          (36) 

From the above equation, we readily see that 

ML x1
t
2 −= 0SU ,                              (37) 

and compared to (33) that 

C=U2.                                     (38) 

It means that the constraint matrix C can be determined by 
taking the last L–1 column vectors of the unitary matrix U 
coming from the SVD of matrix S: 

C=[uM+1 uN+2 … uN].                          (39) 

Constructed in this way, C is a full column rank matrix (rank 
equal to L–1) and the set of linear constraints in (32) is 
named as “convolution constraints”. Thus, taking into 
account this set of constraints in the LCWF structure yields: 

unco Pww = ,                              (40) 
and 

uncuncuncmin JJ wCCRCCw t11tt )( −−+= .           (41) 
In the adaptive context, the convolution constraints can 

be directly imposed by both CLMS and CFLS algorithms, 
making f=0 in their update equations. 
 

4. SIMULATION RESULTS 
 
To certify that FXWF is equivalent to LCWF for the 
convolution constraints, we first consider an active noise 
control (ANC) system with the following characteristics. 
The primary and secondary (s) paths are bandpass (300 Hz – 
5 kHz) FIR filters of order J–1=69 and L–1=19, 
respectively. We have assumed that the secondary path is 
perfectly estimated. The controller h is a filter of order M–
1=50 (N=70 and K=19). White and colored Gaussian 
processes of zero-mean and unitary-variance are used as the 
input signal x(n). The colored Gaussian process is governed 
by the difference equation x(n)=0.1x(n–1)+0.8x(n–2)+v(n), 
where v(n) is a zero-mean white Gaussian process of 
variance σv

2=0.27 (chosen to make σx
2=1). The differences 

between the optimal solution and minimum MSE of both 
approaches are summarized in Table I. Fig. 4 compares the 
amplitude responses of the systems. 

As a second example, the identification of a system by 
an IFIR filter is considered. The plant to be identified is a 
twentieth order lowpass (f3dB=3.1kHz) FIR filter, and the 
interpolated filter is composed of the cascade of the 
interpolator s=[0.5 1 0.5]t and a tenth order unknown filter 
(N=13, M=11, L=3 and K=2). Again, white and colored 
Gaussian processes of zero-mean and unitary-variance are 
used as the input signal x(n). The results are summarized in 
Table II, and the amplitude responses of the systems are 
plotted in Fig. 5. 

The differences in both tables are insignificant and 
prove the equivalence of FXWF and LCWF. 

Table I: ANC system 

 white process colored process 
|wo–wGSCo|2 1.8852x10–24 1.3989x10–22 

|Jmin–JGSC| 2.1021x10–13 4.4176x10–12 
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Fig. 4: ANC system: (a) white and (b) colored Gaussian process 

 
Table II: Interpolated FIR filter (system identification) 

 white process colored process 
|wo–wGSCo|2 7.2409x10–30 2.5633x10–27 

|Jmin–JGSC| 9.7145x10–17 3.4656x10–14 
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Fig. 5: IFIR filter: (a) white and (b) colored Gaussian process 

 
5. CONCLUSION 

 
A novel methodology of filtered-x Wiener filtering has been 
proposed using a linearly-constrained approach. It has been 
shown that FXWF is equivalent to LCWF for a particular set 
of constraints, named as “convolution constraints”. Studies 
concerning the application of the proposed method and 
convolution constraints are in development. 
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