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ABSTRACT

We present a new approach for modeling background in com-

plex scenes that contain motions caused e.g. by wind over

water surface, in tree branches, or over the grass. The back-

ground model of each pixel is defined based on the observa-

tion of its spatial neighborhood in a recent history, and in-

cludes up to K ≥ 1 modes, ranked in decreasing order of

occurrence frequency. Foreground regions can then be de-

tected by comparing the intensity of an observed pixel to the

high frequency modes of its background model. Experiments

show that our spatial-temporal background model is superior

to traditional related algorithms in cases for which a pixel en-

counters modes that are frequent in the spatial neighborhood

without being frequent enough in the actual pixel position. As

an additional contribution, our paper also proposes an original

assessment method, which has the advantage of avoiding the

use of costly handmade ground truth sequences of foreground

objects silhouettes.

Index Terms— Background subtraction, foreground de-

tection, multiple modes

1. INTRODUCTION

Background subtraction has been investigated as a hot re-

search topic for many years due to its wide applications in

computer vision. Particularly, its output can support auto-

matic detection and tracking of moving objects, with appli-

cations in intelligent surveillance, teleconferencing, and 3D

modeling. The basic idea of background subtraction is to

subtract current image from a reference model of the back-

ground, typically learnt from past observations of the scene.

The subtraction leaves only non-stationary or new appearing

objects.

Although it has been investigated for a long time, back-

ground modeling remains challenging, mainly due to the

complexity of real natural backgrounds. In addition to illu-

mination changes, the natural environments such as forest

canopy, lawn and water surface are difficult to model, be-

cause the foreground objects blend with the background, and

because the background itself changes rapidly for example
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due to vibrating motion patterns or to transitions between

light and shadow [1]. Previous research in this area has al-

ready dealt with the problem [2–4], but few of them make

full use of the spatial information around the pixel to infer

plausible appearance changes due to background dynamics.

Similar to [5], we believe that spatial information obtained

in the neighborhood of a pixel can provide an important cue

to model those changes in the appearance background pixels,

especially when they are due to unpredictable motions, such

as the one caused by the wind. Fig. 1 shows how the intensity

value of a vegetation pixel changes between two consecutive

frames, both compared to the pixel itself (blue curve) and to

the closest pixel value in a 3x3 neighborhood around the pixel

(red curve). The fact, that the variation of intensity defined

on the pixel neighborhood is much smaller, indicate that a

better prediction of the background intensity can be obtained

by incorporating spatial information around pixels.

Fig. 1. Intensity variation of a single pixel as a function of

time. The intensity of a pixel at a given time is compared to

its intensity in the next frame (blue), or to the closest intensity

observed on a 3x3 neighborhood around the pixel position,

also in the next frame (red).

In this paper, we propose to model the background of a

pixel not only based on its history, but also on the history of

its spatial neighborhood. The two main contributions of our

paper can be summarized as follows.

• First, We take advantage of both temporal and spatial

information to build a background model that can pre-

serve multiple modes that appear to be relevant in the

surrounding region of the observed pixel. These modes

correspond to the values that could be observed in the

pixel position in case of small unpredictable movement,

e.g. due to wind in grass. They also help to capture

the pdf of complex backgrounds such as the ones en-
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countered on water. Specifically, modes are included to

the background model of a pixel when they occur fre-

quently enough on a spatial neighborhood around the

pixel, whatever the actual position of the occurrence.

This helps in capturing modes that are rare in a specific

pixel, but occur frequently at random on some spatial

area, e.g. like the foam on water.

• As a second contribution, our paper introduces an

original assessment methodology for evaluating back-

ground models. In contrast to conventional evaluation

methods, it does not require the collection of ground-

truth videos, generally based on manual labeling of

foreground regions. Instead, it relies on videos that do

not contain any foreground object. The collection of

those videos is much more easy, especially in intrusion

detection contexts, which most often face empty scene.

2. RELATED WORKS

The literature on background subtraction is vast and we have

limited this review to major trends. More detailed reviews

can be find in [6]. Several popular methods explicitly require

a off-line bootstrapping phase as a training step for learning

model parameters. In this phase, the algorithm is provided

with frames containing only the background. Wren et al. in

[7] propose to model the background by a Gaussian proba-

bility density function. Stauffer et al. [8] instead build on a

mixture of Gaussian (MOG) background model to handle the

complex appearances in foreground region. Such background

models lack the adaptability to the dynamic background be-

cause of the off-line training. And collecting the training

frames with the strict constraint (no foreground regions) is

also difficult in piratical applications.

On the other hand, some methods either do not need any

off-line training [9, 10], or do not need the strict constraint

on the training sample [4], and the model can automatically

evolves on-line. Elgammal et al. [9] and Mittal et al. [10] pro-

pose a non-parametric method to estimate the density function

for each pixel from many samples, by making use of kernel

density estimation technique. Kim et al. [4] propose a multi-

mode approach for foreground segmentation by building an

efficient codebook (CB) model, which is designed to capture

the variation in the background. Although the method can

deal with periodic variations over time, it ignores the spa-

tial information around the pixel, and is not able to capture

complex spatio-temporal distributions of background values

such as the one encountered on water. To mitigate the impact

of motion on the background model learning rate, Barnich

and Droogenbroeck [5] propose to learn and update the back-

ground model of a pixel based on a pseudo-random sampling

of the pixel neighborhood. Their method considers a mode is

relevant for background, because the mode frequently appears

in either the temporal domain or the spatial neighborhood.

But the success of previous works, which only use the tempo-

ral information, shows that repetition in temporality should be

decoupled from the spatio-temporal domain, and regarded to

be more important. Our method instead rely on the observa-

tion of the entire pixel neighborhood to update a model com-

posed of several modes, characterized by their mean-value

and a metric reflecting their frequency of occurrence. In ad-

dition, we the carefully control the way a mode is incorpo-

rated or rejected from the set of so called active modes, which

are the ones that actually characterize the background appear-

ance.

3. PROPOSED ALGORITHM

In order to be successful in real applications, background sub-

traction techniques have to deal with following considera-

tions: (1) how to build the model? (2) how to update model

over time? and (3) how to classify a given pixel as foreground

or background, based on the model? In this section, we give

answers to these questions in detail.

3.1. Background Model Format

The proposed multi-mode spatio-temporal model Mt(i, j),
built for each pixel xt(i, j) sampled at the coordinate posi-

tion (i, j) from the image at time t, is composed of several

modes Mt(i, j) = {m0,m1, · · · ,mK−1}. Here K is a con-

stant the total number of existing modes, and mk represents

the kth mode when modes are ordered in decreasing order

of occurrence. Each mode mk corresponds to a value that is

observed frequently enough in the neighborhood of the pixel

(i, j). It consists of the color vector vk = (Yk, Uk, Vk) indi-

cating the color center of the mode in YUV color space, and

the occurrence metric fk , which is computed as explained in

Section 3.2 to reflect the occurrence frequency of mode mk.

fk is set to zero to indicate the mode mk is still vacant. Note

that the color vector can be represented either in RGB color

space or YUV color space. In this paper, we choose the YUV

color space because researchers find that it is easier to distin-

guish between shadows and objects in this color space [11].

Mt(i, j) summarizes the information related to the observa-

tions made in a recent history of the spatial neighborhood of

pixel (i,j), as detailed in the next section.

3.2. Model Update and Foreground Detection

A pseudo-code that summarizes the textual description that

follows is given at the end of the section.

3.2.1. Model Update

In this section, we explain on how to update the background

model continuously based on new frames observations after

its initialization, which can be simply performed by setting

all the domains in the first ranking mode m0 as following

v0 ← xt(i, j); f0 ← 1.
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The classical approaches to update a background model

replace or down-weight old observations compared to recent

ones [8]. In this paper, we adopt a similar strategy to monitor

the multiple modes mk in the model Mt(i, j) for each pixel.

Formally, the modes mk is defined based on a spatial cov-

ering region with its center located at every pixel position in

the image. Only those pixels lying in the covered region are

considered to control the the model update. In other words,

the observation xt(m,n) is taken into the model Mt(i, j) if

position coordinates m and n satisfy following equations.

i− ⌊N/2⌋ ≤ m ≤ i+ ⌊N/2⌋

j − ⌊N/2⌋ ≤ n ≤ j + ⌊N/2⌋
(1)

Here N is an odd number chosen from 1, 3, 5, · · · , and ⌊⌋ is

the symbol of the floor function. Let xt(m,n) = (Y, U, V )
denote the color vector observed in the N ×N neighborhood

surrounding pixel at coordinate (i, j), as defined in Equation

(1). For each mode mk in Mt(i, j), the distances dk(m,n)
between the existing mode center vk in Mt(i, j) and a given

observation xt(m,n) are calculated as:

dk(m,n) = dL + αdC (2)

where dL = |Y −Yk| and dC = |U −Uk|+ |V −Vk| respec-

tively correspond to luminance and chrominance distances. 1

For the observation xt(m,n), we define kmin(m,n) as fol-

lowing:

kmin(m,n) = argmin
k

dk(m,n) (3)

In the case that dkmin
(m,n) is larger than Tdis, a new

mode should be created because no existing modes are similar

to xt(m,n). In practice, when K = Kmax, the mode is sim-

ply created by replacing the mode with smallest occurrence

metric. In contrast, if dkmin
(m,n) is smaller than a threshold

Tdis, the occurrence metric fkmin
of mkmin

is increased by

a fixed number fi, unless it reaches the maximum saturation

value fm or it has already been incremented at time t. To un-

derstand why the occurrence metric fk of a mode mk is only

incremented once at every time instant, independently of the

possible repetitions of the mode in the N ×N neighborhood,

it is useful to refer to Section 3.2.3, and anticipate the defi-

nition of an active mode. Formally, a mode mk is defined to

be active when its fk is above some threshold. In that case,

the mode mk is considered to be frequent enough to describe

the appearance of a background object, and will thus be con-

sidered to estimate the background mask. Hence, limiting the

magnitude of occurrence frequency increments at each time

instant allows to control the update rate of the model. As ex-

plained in Section 2, this update rate is a critical parameter of

1Without loss of generality, more complex distance metrics can also be

adopted, e.g. as described in [4]. The value range of α in (2) is from 1.0 to

1.5 and we set its value to 1.2. A large weight is given to the chrominance

component because it is more stable than luminance if there are illumination

changes in the environment.

any background model adaptation strategy since it fundamen-

tally trades off the adaptation to background changes (lack

of adaptiveness leads to false detections) and the inclusion

of foreground objects in the background model (leading to

missed detections). In the case which dkmin
(m,n) < Tdis,

the color center vkmin of mkmin also needs to be updated.

Here we adopt an exponentially weighted moving average as

defined by (4). β is a parameter, controlling the update rate

for vkmin
, whose value is in the range (0, 1).

vkmin
← (1− β) · vkmin

+ β · xt(m,n) (4)

After all the observations xt(m,n) in the spatial neigh-

borhood have been considered, the fk for all the modes are

decreased by a fixed number fd. Decreasing fk gives the op-

portunity to lower the ranking position for the modes that did

not appear anymore in a recent history, thereby allowing for

background model updates. Finally all modes mk are ranked

in decreasing order of their updated occurrence metrics fk.

3.2.2. Foreground Detection

Given the background model, activated modes can be defined

by measuring the occurrence metric fk. If fk ≥ Tf , mk is

considered to be activated. Foreground regions can then be

directly segmented from image by computing the distances

dk between the sample xt(i, j) and the centers vk of all acti-

vated modes mk as is shown in (2). Then we find the smallest

distance dkmin
(i, j) among all dk. Only if the minimum dis-

tance dkmin
(i, j) is larger than a threshold Tdis, the pixel is

assumed to be in the foreground region, and the binary fore-

ground mask maskt(i, j) is set to 1; otherwise, it is assigned

to the background and maskt(i, j) is set to 0.

3.2.3. Impact of Parameters on Model Update Rate

This section aims at highlighting the fact that the parameters

fi, fd, fm and Tf , involved in model update and foreground

mask computation, are crucial because they actually deter-

mine the adaptation speed that the background model reacts

and adapts to dynamic backgrounds. As explained in Section

2, the update strategy is a critical component of most back-

ground models, because it trades off between the false fore-

ground detections caused by a too slow adaptation to back-

ground changes, and the missed detections due to the inclu-

sion of a foreground object into the background model.

With that respect, the ratio between fi and fd appears to

be an important factor since it controls the threshold beyond

which a mode will be considered as being frequent enough

to be relevant. Tf is an important threshold, which prevents

the immediate inclusion of foreground objects in the back-

ground model. fm actually controls the possible longest time

that a mode is kept in the background model since its last oc-

currence. Actually, fi, fd, and Tf together define the back-

ground model update latency, which is important regarding
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the inclusion of new relevant modes in the background model.

Large value for Tf and small value for fi, fd result in the

high model latency but stronger robustness against inclusion

of foreground objects into the background model. In practice

fd is set to one by default, and fi is selected to be larger than

one, typically 2 or 3. Tf and fm are set to 200 and 2000 re-

spectively. Although so many parameters are difficult to tune

manually, they also give the opportunity to be adapted in dif-

ferent deployments, which makes the method more flexible in

some degree.

Algorithm 1 Proposed algorithm for background subtraction
Input: input image xt , image height and width h, w, allowable modes number K, and size of neighborhood N

Output: binary image maskt and background model mt
k

= {vt
k
, ft

k
, flgt

k
}

Initialization: t = 0;

for i < w and j < h do

v0 ← xt(i, j); f0 = 1; flg0 = 1;

end for

Model update and foreground detection:

while t 6= end do

for i < w and j < h do

Model update

for m and n satisfied equation (1) do

kmin = arg mink dk(m,n) with dk(m,n) defined in (2);

if dkmin
≥ Tdis then

vK−1 ← xt(m,n);

fK−1 ← fK−1 + fi; flgK−1 = 1

else if flgkmin
= 1 then

flgkmin
= 0;

vkmin
← (1 − β) · vkmin

+ β · xt(m,n)

if fkmin
< fm then

fkmin
← fkmin

+ fi;

end if

end if

end for

Foreground detection

kmin = arg mink dk(i, j) with dk(i, j) defined in (2);

if dkmin
< Tdisandfkmin

> Tf then

maskt(i, j) = 0;

else

maskt(i, j) = 1
end if

for k < K do

fk ← fk − fd; flgk = 1;

end for

end for

end while

4. ASSESSMENT METHODOLOGY

This section proposes an original assessment methodology

for quantitative evaluation of the result of background sub-

traction. Our purpose is to avoid referencing to sequences

with manually labeled foreground regions, mainly because

the generation of such handmade sequences is a heavy task

that can not be implemented each time a system is deployed

in a real surveillance environment. Hence, we are interested

in assessment metrics that can be easily and automatically

computed based on sequences without foreground objects, be-

cause those sequences are easily available in many practical

scenarios, including in intrusion detection surveillance sys-

tems for example. For such sequences, all pixels that are la-

beled as foreground by the background subtraction algorithm

can be considered as false alarms, which allows direct com-

putation of the false positive rate Fp.

Another metric Bd, which actually reflects the false neg-

atives (or missed detections), is defined by summing up the

subspace covered by the multiple modes of the background

model in the investigated color space. If the background den-

sity Bd is larger, the background detection can resist to a big-

ger noise, which results in a lower Fp, but it also increases

the risk of possible missed detection. So we need to consider

the trade off. Here, both Bd and Fp are obtained by taking

the average on all image frames in the sequence.

Typically, Bd can be controlled by the threshold Tdis. By

gradually increasing Tdis, we can obtain a series of Fp values.

In other words, several pairs of coordinates (Bd, Fp) can be

obtained by choosing the different Tdis and we can draw a

Relative Operating Characteristics (ROC) based on (Bd, Fp)
as is shown in Fig.2. In this curve, points near the origin

indicate better performance compared to those far away from

it. The crossover points between curves reveal that a method

can be better than another within some range of Bd, while

performing worse in other Bd value range.

The proposed assessment method can be used either to set

the value of some critical parameters described in previous

section such as the threshold Tdis or the size of the neighbor-

hood N , or to compare performances of two different back-

ground subtraction methods. However, a fair comparison of

different background subtraction algorithms can only be pro-

vided if these methods have a similar background model up-

date latency, which is the average time needed by a model

update mechanism to account for the change of background

appearance. However, the latency is controlled by a set of pa-

rameters that depend on the details of each method. In prac-

tice, they should be set to lead to comparable latency so that

it makes the comparison of different methods relevant.In the

next section, we give explanations on the experimental result

based on the proposed assessment scheme.

5. EXPERIMENTS

To evaluate the result of the proposed method, we have run

experiments on several sequences characterized by complex

dynamic backgrounds. There are swaying trees, grass and

floating water surfaces in these sequences.

5.1. Result Analysis

Fig.2 analyzes the impact of the size of neighborhood N . N
is set to 1, 3, 5 and several pairs of coordinates (Bd, Fp) are

generated by using different thresholds Tdis. Here, N = 1
implies that no spatial information is used in the background

model. We observe in Fig. 2 that the best value for N depends

on the content of the sequence, and on the targeted Fp. If

there is large motion in the background, a large value of N is

useful to decrease Fp. As is shown on the left of Fig.2, N = 5
gives the best performance in the range of small Fp values.

The reason is that the sequence ”Water Surface” contains a

background with large irregular movement on water surface.

In contrast, N = 3 leads to the best performance on the right

side of Fig.2, mainly because the motions of the background
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caused by trees and grass oscillation are small. Extensive use

of our method reveals that for most sequences, N = 3 and

Tdis = 20 gives a good balance between Bd and Fp.
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Fig. 2. Performance comparison between our method, with

different values of N , and the method in [4].

Fig.2 also presents a comparison with the codebook algo-

rithm in [4], which is a typical multi-mode background sub-

traction method based on temporal historical observations of

a single pixel. In contrast to our approach, [4] has the op-

portunity to analyze the more image frames as the training

dataset before defining the background model. Hence it has

the opportunity to exploit the future, and is not appropriate

when dynamic background model adaptation is required. In

contrast, our approach can adapt to changing backgrounds.

However, to make the comparison relevant, we have set the

parameters fi, fd, fm, Tf and β to values2 that promote

slowness of background model adaptation, thereby avoiding

that rapid (compared to the background change rate) update of

the model helps in reducing the Fp rate. However, we observe

that our proposed approach, whilst more flexible and adap-

tive, achieves better performance than [4] when N = 3 or 5.

5.2. Visual Comparison

In Fig. 3, several frames are presented from different se-

quences. The foreground detection results obtained with [4],

[5], and our proposed method are shown in the 2nd, 3rd and

4th columns respectively. In the 1st and 2nd row in Fig. 3 ,

there is no actual foreground region and our method generates

less noises than the other two schemes. In the 3rd row, there

are two persons walking in a complex scene. Our method gen-

erates less noise while still detecting the two persons’ silhou-

ettes. Note that we did not tune parameters for each sequence.

Instead, we apply the default parameter in all methods.

6. CONCLUSION

In this paper, a multi-mode spatio-temporal background mod-

eling algorithm is proposed for detecting foreground regions

in complex scenes. Multiple modes in the model can reflect

the possible temporal variations for pixels that lie in the back-

ground region. Besides, the analysis of the pixel appearance

2fi = 2, fd = 1, fm = 2000, Tf = 200 and β = 0.01

Fig. 3. Selected foreground detection results. The original

image, and the results obtained with [4], [5] and the proposed

algorithm are shown in each row respectively.

history in a spatial neighborhood helps in capturing the set of

modes associated to moving backgrounds (e.g. wind in grass)

or to complex but stationary in time and space stochastic dis-

tributions of background values, as encountered on water sur-

faces (foam). Comparison with previous arts shows that the

proposed method has better performance on the precision and

recall ratio for foreground region in the image.
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