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ABSTRACT

In this paper, we address the fusion problem of two esti-
mates, where the cross-correlation between the estimates is
unknown. To solve the problem within the Bayesian frame-
work, we assume that the covariance matrix has a prior
distribution. We also assume that we know the covariance
of each estimate, i.e., the diagonal block of the entire co-
variance matrix (of the random vector consisting of the two
estimates). We then derive the conditional distribution of the
off-diagonal blocks, which is the cross-correlation of our in-
terest. The conditional distribution happens to be the inverted
matrix variate ¢-distribution. We can readily sample from this
distribution and use a Monte Carlo method to compute the
minimum mean square error estimate for the fusion problem.
Simulations show that the proposed method works better than
the popular covariance intersection method.

Index Terms— Covariance Estimation, Data Fusion, In-
verted Matrix Variate t-distribution, Monte Carlo Method,
Wishart Distribution

1. INTRODUCTION

Distributed data fusion problems have been attracting re-
searchers from many fields, especially in the sensor network
community. The motivation for distributed systems is that
they can provide a degree of scalability and robustness, which
cannot be achieved with traditional centralized architectures.
In many applications, the information propagated through a
sensor network is transformed to a form that provides the
estimated state of interest. In many cases, the information is
converted into the first and second moment statistics, which
can readily be exploited within the framework of Kalman-
type filters [1, 2, 3, 4].

A serious problem in this setup is that the estimates pro-
vided by different nodes have unknown cross-correlations.
This is particularly true for networks with unknown topo-
logical structure. Many approaches have been proposed to
mitigate the problem. A popular one is known as the covari-
ance intersection method [5]. It provides a general frame-
work for information fusion with lack of knowledge about
cross-correlation between noisy measurements, and it yields
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consistent estimates between the fused local estimates. Sev-
eral authors have proposed various versions of this method
[6,7,8,9].

In this paper, we use a Bayesian approach to address the
problem. We assume that the prior of the covariance matrix is
the Wishart distribution. Since we know the covariance ma-
trix of each estimate, which is just the diagonal submatrix of
the entire covariance matrix, we can derive the conditional
distribution of the off-diagonal submatrices. Furthermore, we
show that this conditional distribution is the inverted matrix
variate ¢-distribution. It is known that one can easily sample
from this distribution, entailing that we can efficiently use the
Monte Carlo method to compute the minimum mean square
error (MMSE) estimate. Simulation results show that the pro-
posed method works better than the traditional covariance in-
tersection method.

The paper is organized as follows. We formulate the prob-
lem in Section 2 and describe our proposed algorithm in Sec-
tion 3. In Section 4, we derive the conditional distribution of
the off-diagonal block matrix. Simulation results of the pro-
posed algorithm are presented in Section 5. Section 6 con-
cludes our paper.

The notation we use in this paper is as follows. Uppercase
letters refer to matrices and lowercase letters to vectors or s-
calars; |A| is the determinant of a matrix A; A > B means
that A — B is a positive definite matrix; « ~ p(x) signifies
that the random variable z is distributed according to p(z);
the symbol ® denotes Kronecker product; [}, is the identity
matrix with size k x k; tr(A) is the trace of the matrix A; O
is a matrix with all entries equal to zero; I'(+) is the standard
gamma function, and I';(-) is the multivariate gamma func-
tion [10] defined as

k
Ty(n) = a*=DAT]T <n - %(j - 1)) NG

Jj=1

2. PROBLEM STATEMENT

Consider the following problem. Given two estimates X; and
X9 of the true state vector xg with their covariance matrices
P11 and P»s respectively, we seek a fusion scheme that com-
bines the available information and provides an estimate X,
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with minimum mean square error. We use Py to denote the
covariance of X.

We combine x; and x, to form a single random vector,
whose corresponding covariance matrix is

Py P12}

P, = 2
|:P1’1; P22 ( )

If we know Pjo, things will be very easy. We can start by
constructing an unbiased estimator in the form

X0 = Wixy + Wako, 3

where W, + Wy = I. The minimization of the mean square
error is equivalent to the minimization of tr(Pp), which can
be expressed as

tr(Po) =1r (W1P11W1T + W1P12W2T
+Wo PLW + WaPp Wy ).

This can be carried out by using the method of Lagrange mul-
tipliers. Let A be the matrix of Lagrange multipliers. Define
now L as

L:tr(Po) +A(W1 + Wy 7[).
Then, using the identity

or(XAXT)

_ T
Sx = XA+ xAT,

we obtain the stationary points by the following equations:

OL

= —9W, P, +2WoPL 4+ A =
o, 1P+ 2Wa Py + 0
aiL—QWP +2WiPs+A=0
o, ~ 2ahe W1Pig =
OL

gr = it

Combining all of the three equations, we find that

Wi = (Pa — PL)(Pi1 — Pia — P+ P)™ b (4)
Wy = (P11 — Pia)(Pi1 — Pia — P+ Po)™', (5)
which are the weights for optimal fusion in the mean square
error sense. When we substitute (4) back into (3), we obtain
)A(mmse = Wlﬁl + W2)A(2-
= (Pyo — PL) (P11 — Pia — P+ Pa2) '%y
+ (P11 — P12)(P11 — Pia — Py + Pay) '%o.
(©)

However, in many situations we do not have information
about Pj5. For example, in a sensor network, when two nodes
have their measurements and we want to fuse them, we often
do not know their cross-covariance. In [5], the authors have

proposed the covariance intersection method to minimize the
upper bound for all possible P;5 by a convex combination of
the covariances, i.e.,

-1 -1 -1

Py =wPy + (1 —w)Py

—15 -1z N

Py %o = wPj; %1 + (1 — w)Pyy X,

where w € [0, 1]. The minimization of the trace requires itera-
tive minimization of the given nonlinear cost function with re-
spect to the weight coefficient w. In order to reduce the com-
putational complexity, several suboptimal non-iterative algo-

rithms for fast covariance intersection have been developed
[6, 7, 8, 9]. One of them sets w according to [7]

_ P
w=-———————".
|P11] + | P22

We will use it in the sequel for comparison with our algorith-
m.

)

3. THE MINIMUM MEAN SQUARE ERROR
ESTIMATOR

Our strategy to solving the problem is to put it into a Bayesian
framework. We assume that P, has a prior and that the prior
is the Wishart distribution. The Wishart distribution is any of
a family of probability distributions defined over symmetric,
nonnegative-definite matrix-valued random matrices. These
distributions are of great importance in the estimation of co-
variance matrices in multivariate statistics [11]. The Wishart
distribution is defined as follows.

The k x k random matrix A is said to have a Wishart dis-
tribution if its probability distribution function (pdf) is given
by

|A|"2 exp (—Ltr(Z1A)
p(A): En (3 2 " )
277 [2]3T(5)

)

where 3 is a positive definite matrix, n > k is the degree
of freedom, and I';, is defined by (1). We use Wy(n,X) to
denote the Wishart distribution. We will omit &£ and write
simply W(n, X)) if the size of the matrix is obvious from the
context.

The Wishart distribution is strongly related to the multi-
variate normal distribution. Suppose X is an n X k matrix,
the rows of which have k-variate normal distribution with ze-
ro mean and covariance matrix ¥, denoted as A (0, 2). Then
the k x k random matrix A = X7 X has a Wishart distri-
bution, i.e., W(n, X). This property makes the generation of
Wishart random matrices easy.

In our problem, we know P;; and P,5. To fuse the data,
we would like to have information of P, conditioned on P;
and P,5. We express this by the conditional

p(Pr)
Pio| Py, Pyy) = ———F—.
P( 12\ 115 22) p(Pu,PzQ)
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Since P;; and Pss are known, our weight matrices W and
W, and therefore the MMSE estimator X, s¢, are uniquely
determined by P2 as in (6). We think of it as a function of the
matrix variable Py and use f(P2) to denote it. Note that Py
cannot be an arbitrary matrix. According to Theorem 7.7.6
in [12], Pyy — P1T2P1_11P12 must be positive definite because
P, is a positive definite matrix. Therefore, we express our
MMSE estimator by

Kmmse = / f(Pi2)p(Pi2|Pi1, Pa2)dPrs.
Pyy>PL P Pra

Unfortunately, the above integral is computationally in-
tractable.

In order to approximate the integral, we have to resort to
the Monte Carlo method. We sample M independent random
matrices, Pl(;n) ~ p(Py2| P11, Pyg) form = 1,--- , M. Then
the Monte Carlo method approximates X, se by the follow-
ing expression:

1 M
m=1

An immediate question is how we can sample from the
conditional distribution p(Pia|Pi1, Pe2). We answer the
question in the next section.

4. CONDITIONAL DISTRIBUTION OF THE
OFF-DIAGONAL BLOCK SUBMATRICES

Suppose that the random matrix A is distributed according
to W(n,X). Let the partitions of the two positive definite
matrices A and X be denoted by

A11 A12 211 E12
A= 3= . 8
|:A,{2 A22:| |:Z,{2 222:| ( )

Here we assume 15 = O. Recall that our objective is to
derive the expression for p(Aj2|A11, Ase). We will need two
properties of the Wishart distribution in our derivation [11].

Lemma 1. Let A and ¥ be partitioned into | and k — |
rows and columns as shown in (8). If A is distributed ac-
cording to Wi(n,X), then A1y is distributed according to
Wi—i1(n, ¥11).

Lemma 2. If ¥15 = O and A is distributed according to
W(n,X), then A1y and Ass are independently distributed.

Lemma 1 provides the marginal distributions of p(A11)
and p(Asgq) (they are W(n, X11) and W(n, Xos), respective-
ly). Lemma 2 maintains that Ay, and Aso are independent.

Therefore, p(A12|A11, A22) becomes

p(A12|A1r, Az) = ]3(14}71(1141)422)
__ 4
p(A11)p(A2z)

With a little algebraic manipulation, we have

p(A12|A117 A22)

7. |A|7”‘§‘1
n—k—1
=Z - (|An1||Az2 — AT AL Ara]) 2
n—k—1
=7 (|AnAx|ll - A5 ALAT Anl) 7, ©)
where n > k — 1, and the constant Z equals
k : 0\ 2
7 ( 12:1F(§(”+1_2)>) 1
= k 1 . ’ n—k_1
[ P(z(n+1-17)) 71'%|A11A22| 2
k
—1 F(%(n—i—l—i)) 1
R L N nE_
Hj:1+§ F(%(n—i—l—])) w%|A11A22|7§ -
E
L T(5(n+1—1)) 1
T 1 k N2 n—k1
j=1 F(§(n_ §+1_.7)) W?|A11A22| 2
T« (%) 1

2
1 EYy ok 1"
Fg(i(n_§)) W%\Anx‘bz\%

The above distribution is the inverted matrix variate t¢-
distribution whose definition is as follows [13]:

Definition 1. The random matrix T € R**™ is said to have
an inverted matrix variate t-distribution with parameters
M € RFXm 53 € RFXk Q€ R™ ™ and n if its pdf is given
by

Fk(l(n‘f'm"‘k_ 1)) — -k
p(T) — mk2 T |E| 2 Q| 2
2 I(z(n+k—1))

I =S~ HT - M)Q YT — M)T|

n

-2
2
)

where Q >0, % >0,n>0and I — X" YT — M)Q™ (T —
M)T > 0. We denote this by T ~ IT g m(n, M,%, Q).

For our case in (9), it is not difficult to obtain that
A?Q‘A117A22 ~ IT§7%(R—I€+1,O,A22,A11). (10)

For sampling from the inverted matrix variate ¢-distribution,
we use the following lemma [13]:

Lemma3. Let S ~ Wy (n+k—1,1I};) and X ~ Ny 1, (0, [;;®
I,,,) be independently distributed. For M € R**™, define

T=3%3(S+XX")"2XQ% + M,
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where S + XXT = (S + XXT)2((S + XXT)2)T and
Y2 and QF are the symmetric square roots of the posi-

tive definite matrices . and ), respectively. Then, T ~
IT fpym(n, M, 3, ).

According to Lemma 3, the following theorem follows
immediately.

Theorem 1. Let the random matrices S and X be distributed
according to S ~ Wy (n,Ix) and X ~ Ny (0,15 @ I).
If

AT, = (A2)3 (S + XXT) 2 X(An) 2,

then Ay ~ p (A12|A11, Aso).

5. NUMERICAL EXPERIMENTS

In this section, we construct a model to test our algorithm.
Suppose the variable to be estimated is x( and that it has the
normal distribution N (g, o). We have two available mea-
surements x; and X», both of which have the condition dis-
tributions N (xg, X1) and N (xg, X3), respectively. We can
consider x; and x5 to be measurements as well as estimates
since we shall let x; = x; if we make estimation only based
on x;. If we concatenate x; and X5 into one vector, the dis-
tribution of the vector conditioned on xj is

v (o] 5]

Furthermore, we can easily obtain its marginal distribution, or

X1 Ko| [X1+ Xo, Yo

ol = (G [ w]) o
Note that the covariance matrix in (11) is just the one in (2),
which is of our interest. So Pj; = X1 + Yo and Pyy =
Y + X, and they are both known exactly. On the other hand,
Pi5 = ¥ is unknown.

To generate the data for our numerical experiment, we
first draw 2o, 31, and X5 from Wi (n, 0 Ix ), Wi (n, 0% 1)
and W k (n,o%I E ), respectively. We set the degree of freedom
n = 4 and use k = 4. Then we generate the true value xg
by sampling from N (g, Xo), where py = 0. Similarly we
generate the measurements x; and x5 from A (xg,>) and
N (xqg,X2), respectively. As stated above, the marginal co-
variance matrix (11) of the combined measurements becomes

p, = Pt %e o | (12)
2o, Yo+ X0

Now we have all the data we need for testing and compar-
ing the estimators. For comparison, we use two other estima-
tors, the optimal estimator (6) with all the available informa-
tion and the fast covariance intersection method from [7]. For

each configuration, we ran 200 tests. In the proposed algo-
rithm, for approximating X,,ms. we generated 500 samples.
In the legend, we use optimal, Bayesian and CI to indicate the
optimal method, the proposed method, and the fast covariance
intersection method, respectively.
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Fig. 1. The mean square error of the three estimators for dif-
ferent 02 (02 = 1).

Figure 1 shows the mean square error of the three esti-
mators for different 08. From (12), we can see that the cross-
covariance is determined by o3. Roughly speaking, the ‘larg-
er’ the matrix values are, the ‘more’ the two estimates x; and
X, relate to each other. From Fig. 1, we see that the optimal
method works best as expected. The proposed Bayesian al-
gorithm is about 20 percent worse than the optimal one, but
much better than the covariance intersection estimator. Fig-
ure 2 shows the mean square error for different values of o2.
Unlike 02, 02 has no effect on the cross-covariance. We have
similar performance as shown in the first figure. Again, the
optimal estimator is the best, and the proposed estimator has
performance that is close to that of the optimal estimator and
much better than the performance of the covariance intersec-
tion method.

We would like to point out that, strictly speaking, the
covariance matrix P, in the simulations does not have the
Wishart distribution, as the off-diagonal block matrix is al-
ways symmetric. Nevertheless, our estimator still performs
well.

6. DISCUSSION

In this article, we propose a Bayesian approach to solve the
data fusion problem when the cross-covariance between two
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Fig. 2. The mean square error of three estimators for different
o? (0(2) =0.2).

estimates is not available. We first assume that the prior of
the covariance matrix is the Wishart distribution. Because we
know the covariance of each estimate, which is the diagonal
block of the covariance matrix, we can obtain the condition-
al distribution of the off-diagonal block. The distribution of
this block is the inverted matrix variate ¢-distribution. We also
show how to sample from this distribution. As a result, we can
use the Monte Carlo method to compute the MMSE estima-
tor. Numerical experiments show that the performance of our
method is much better than that of the covariance intersection
method. Another advantage of our algorithm is that under the
Bayesian framework, we are able to adjust the hyperparame-
ter of the prior according to the information available, making
the algorithm more robust in some special cases.

The curious reader may wonder why we assume the pa-
rameter X of the prior Wishart distribution W(n, X)) to be a
block diagonal matrix. The reason is that by doing so, the
diagonal blocks of the resulting covariance matrix are inde-
pendent from each other. Otherwise, the joint distribution of
the diagonal blocks are very complicated making the deriva-
tion of the conditional distribution of the off-diagonal blocks
very difficult, if not impossible. We can see that the Wishart
distribution with block diagonal parameter matrix X is still
general enough to allow for good performance.

In this work, we only consider the fusion problem with
two nodes. Admittedly the application of the proposed algo-
rithm is confined to the situations with two nodes, while we
probably need to deal with the fusion problem with informa-
tion from several nodes in usual sensor network application.
This is going to be the direction of our future efforts.
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