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ABSTRACT

Pronunciation by Analogy is a method for generating pho-

netic transcriptions for previously unseen written words based

on matching substrings of known words and their pronuncia-

tions. The method inherently generates several candidate pro-

nunciations and a multitude of heuristics have been proposed

for choosing the best one. In [1], a theoretically justified prob-

abilistic approach for scoring the pronunciations was pro-

posed, with performance on par with the best heuristic meth-

ods. However, a certain ad hoc modification—a fractional

power applied to the estimated probabilities of the substring

pronunciations—was also found to improve performance. In

this article, we give an explanation for this unexpected im-

provement. We show that the fractional power in fact im-

proves the estimates of the candidate pronunciation proba-

bilities. This also gives an indirect explanation of the good

performance of the current best heuristic proposed in [2].

Index Terms— Pronunciation by Analogy, probability

estimation, Bayesian model averaging.

1. INTRODUCTION

Generating the pronunciation for an unseen word is a difficult

problem for certain languages, notably English. There are

several different approaches for the task but Pronunciation by

Analogy (PbA) is among the best and works surprisingly well

given its relative simplicity. PbA was originally proposed by

Glushko in 1979 [3] as a psychological model of how humans

pronounce pseudowords; a concrete algorithm was given by

Dedina and Nusbaum [4] with their PRONOUNCE program.

The method inherently generates several candidate pronunci-

ations and several heuristics have been proposed to choose the

best one among them. The most successful implementation of

such heuristics was formulated by Marchand and Damper [5]

in 2000, who presented five heuristic strategies and a method

from information fusion literature to combine the scores of

these into a combined strategy [5, 6]. Further improvements

were recently made by Polyákova and Bonafonte [2] who pro-

posed another six component strategies, one of which (Strat-

egy 11) turned out to be very good.

Since then, Kujala and Keurulainen [1] proposed an alter-

native, probabilistically justified method for scoring the dif-

ferent candidate pronunciations. This new method performs

as well or even better than any of the heuristic methods. The

good performance of the current best performing heuristic,

Strategy 11 of Polyákova and Bonafonte [2], can be explained

by its similarities to the theoretically justified probabilistic

method. However, one apparently arbitrary aspect of Strat-

egy 11 remained unexplained and it turns out [1] that a vari-

ant of the same idea can be used to improve the performance

of the probabilistic method as well. In the present paper, we

explain this unexpected result. We show that the seemingly

ad hoc modification works precisely because it accounts for

certain non-idealities in the theoretically justified algorithm.

2. PRONUNCIATION BY ANALOGY

Suppose we have a dictionary consisting of aligned pairs

(x, y) of words and pronunciations so that every letter of x
correspond to one phoneme at the same position in y. Ob-

viously such an alignment requires silent phonemes to be in-

serted in the pronunciations (among other technicalities), but

this is the type of training data that is used in most PbA work.

Most work uses the 20,009 word NETtalk corpus, which is

manually aligned by Sejnowski and Rosenberg [7].

The gist of a PbA method is as follows.1 As a preprocess-

ing, for every substring appearing in any word of the train-

ing corpus, the frequency of each of its possible pronuncia-

tions over the whole corpus is calculated. Then, a pronuncia-

tion for a new input word is generated by considering differ-

ent segmentations (typically all segmentations with the mini-

mum number of segments) of the input word into substrings

and concatenating the previously seen pronunciations of these

substrings. This process inherently yields several candidate

pronunciations and different variants of PbA differ most no-

tably in how they choose the best one among the candidates

(usually basing the choice somehow on the frequency data).

1We are giving a simplistic view here, ignoring certain details which are

not important for the present context (such as the use overlapping segments,

special handling of the beginning and end of words, etc., see [1] for the de-

tails); none of these, however, are essential for the present focus although

they are certainly important in their own right.
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The accuracy of a PbA algorithm is usually quantified by

so called leave-one-out evaluation, in which each word in

turn is temporarily removed from the training corpus and it

is tested whether the removed word can be pronounced cor-

rectly by analogy with the remaining words in the corpus. The

overall accuracy of the algorithm is the proportion of words

that were correctly pronounced. We apply statistical testing

as in [5] to determine if an increase in accuracy from a given

baseline result is statistically significant.

2.1. Probabilistic approach

The probabilistic approach proposed in [1], in its simplest

form, works as follows.

For every segmentation x = x1 + · · · + xn of the input

word x into segments xi, i = 1, . . . , n, estimate the proba-

bility of every candidate pronunciation y = y1 + · · · + yn
as

p̂(y1 + · · ·+ yn | x1 + · · ·+ xn)

=
n
∏

i=1

(# of times xi is pronounced as yi in the corpus)

(# of times xi appears in the corpus) + 1
.

(1)

The +1 at the denominator makes the probability estimation

more accurate by accounting for the possibility that a segment

might have a previously unseen pronunciation.

After the probabilities p̂(y1 + · · · + yn | x1 + · · · + xn)
given a segmentation have been estimated, these probability

distributions are then averaged over all different segmenta-

tions x = x1 + · · ·+ xn of the input word with the minimum

number n of segments. The candidate pronunciation y with

the highest averaged probability is then output as the most

likely pronunciation of the input word. This corresponds to

Bayesian model averaging and is mathematically optimal as-

suming that one of the considered segmentations is the cor-

rect generating model (and that a priori, any of the models is

equally likely to be the correct model).

For simplicity, we have only considered non-overlapping

segments here as in the method of Sullivan and Damper [8].

However, it should be noted that the probabilistic method we

consider here has been generalized to overlapping segments

in [1] and our new results do generalize to that case as well.

2.2. Strategy 11 of Polyákova and Bonafonte [2]

The best performing current heuristic, Strategy 11 of

Polyákova and Bonafonte [2] is essentially as follows. Each

candidate pronunciation is scored as

∑

[

n
∏

i=1

(# of times xi is pronounced as yi in the corpus)

]1/n

,

(2)

where the sum is over all segmentations with the minimum

number n of segments, and the pronunciation y with the high-
est sum is output as the best candidate. Obviously the sum-

ming is equivalent to the model averaging of the probabilis-

tic method so the only differences are that Strategy 11 uses

raw frequencies rather than the normalized frequencies of the

probabilistic approach and Strategy 11 computes the geomet-

ric mean rather than the product of the values of the segments.

In [1] it is shown that the estimated probabilities (which

are theoretically justified) are generally better than using raw

frequencies (the product of which can be considered an ad

hoc function). However, it turns out that the geometric mean,

which differs from the product by the n-th root operation, in

fact clearly improves performance. Thus, we are faced with

the dilemma that while every other probabilistically justified

modification to the heuristic methods improved performance,

the removal of the seemingly ad hoc root function decreased

performance.

This issue was considered in [1] and it was shown there

that a constant root is generally better than the varying n-th
degree root. Thus, the n-th root works only because n, the
number of segments, happens to generally be near the optimal

constant value of n; it is the shape of the root function itself

that is important. However, the surprising fact remains that

the application of a “magic function” to the estimated proba-

bilities before model averaging improves performance in the

otherwise theoretically justified probabilistic algorithm.

In the following, we show that the root function in fact

makes the estimates of the probabilities more accurate and so

there is a direct explanation of the improved performance.

3. ESTIMATION OF PROBABILITIES

On an abstract level, the probabilistic PbA algorithm con-

siders several potentially correct models m (segmentations),

each generating an estimated probability distribution p̂(y |
x,m) over different candidate pronunciations y for the input

word x. Then, these distributions are averaged over the prior

distribution p(m) of the models to yield the final estimate of

the probability of correctness

p̂(y | x) =
∑

p(m)p̂(y | x,m) (3)

for each candidate pronunciation y. Now, it turns out that

in practice, a better result is obtained by using instead the

estimate

p̂(y | x) =
∑

p(m)p̂(y | x,m)α (4)

for some 0 < α < 1 (where α = 1/(degree of the root)).
The fact that it is a power function that works so well as a

“magic function” is not surprising as it is unique in that it has

the property that it can be applied to a product factorwise (the

probabilities p̂(y | x,m) are products of the probabilities of

segments) and it also preserves the range [0, 1] of probabili-
ties.
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degree of the root = 1 degree of the root = 3
overall correct proportion 63.80% overall correct proportion 65.60%
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Fig. 1. A plot of the estimated probability of correctness of the candidate pronunciation versus the observed proportion of correct

outputs for different roots applied to the estimated probabilities before model averaging in the probabilistic PbA algorithm

described in the text (for NETtalk corpus, speech-to-text direction). The circles (green) give the frequency for correct outputs,

the squares (red) give the frequency for incorrect outputs, and the diamonds (blue) give the proportion of correct outputs.

Generally the overall correct proportion appears to be highest where the estimated probabilities are closest to the observed

correct proportions (around degree 6).

However, what we are trying to clarify here is the mecha-

nism by which this increases the actual probability of correct-

ness of the output pronunciation

y∗ = argmax
y

p̂(y | x). (5)

The answer can be seen in Figure 1. The root brings the esti-

mated probability p̂(y | x) closer to the true observed propor-
tion, and hence makes the choice of the best candidate more

accurate. The agreement of the true and estimated probabili-

ties obtained by the root is surprisingly good.

There was no reason to expect such a good agreement as

the choice function is insensitive to any monotone transfor-
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NETtalk text-to-speech

Root Distance Accuracy (%)

1 0.2955 63.80

2 0.2183 65.25

3 0.2000 65.60

4 0.1967 65.81

5 0.1982 65.87

6 0.2011 65.92

7 0.2043 65.89

8 0.2076 65.88

12 0.2181 65.90

24 0.2338 65.87

48 0.2441 65.87

→ ∞ 0.2562 65.85

“∞” 60.53

NETtalk speech-to-text

Root Distance Accuracy (%)

1 0.2528 76.23

2 0.1714 76.66

3 0.1545 76.83

4 0.1518 76.74

5 0.1531 76.69

6 0.1558 76.65

7 0.1587 76.58

8 0.1615 76.51

12 0.1701 76.51

24 0.1825 76.50

48 0.1905 76.49

→ ∞ 0.1998 76.49

“∞” 71.32

CMUDict speech-to-text

Root Distance Accuracy (%)

1 0.2939 71.82

2 0.1999 72.80

3 0.1749 72.91

4 0.1684 72.86

5 0.1682 72.75

6 0.1703 72.66

7 0.1731 72.58

8 0.1761 72.53

12 0.1863 72.43

24 0.2021 72.39

48 0.2125 72.38

→ ∞ 0.2251 72.38

“∞” 66.74

CMUDict speech-to-text

Root Distance Accuracy (%)

1 0.2506 77.47

2 0.1689 78.16

3 0.1495 78.30

4 0.1452 78.30

5 0.1455 78.25

6 0.1474 78.18

7 0.1498 78.14

8 0.1523 78.10

12 0.1605 78.02

24 0.1729 77.98

48 0.1810 77.98

→ ∞ 0.1906 77.98

“∞” 73.21

Table 1. Evaluation of the probabilistic algorithm for different values of the root. The distance value quantifies the difference

between the estimated probability of correctness of the candidate pronunciation and the observed probability of correctness

(see the text for details). The infinite root corresponds to Strategy 3 of Marchand and Damper [5]. The standard error of the

accuracy (%) scores is around 0.3.

mation of the final probabilities p̂(y | x). Thus, the same

improved overall performance of the algorithm could logi-

cally have been obtained for any monotone correspondence

between the estimated and true probability of correctness of

y.

The same qualitative results generally hold for different

data sets and different variants of the algorithm proposed

in [1]. For example, if we repeat the same experiment for

the 112,102 word automatically aligned CMUDict corpus

(obtained from http://www.pascal-network.org/

Challenges/PRONALSYL/) or consider the speech-to-

text direction (obtained by swapping the written words with

their pronunciations) for either corpus we obtain visually the

same pattern as shown in Figure 1.

To measure the agreement between the true and estimated

probabilities objectively, we quantify it using the square dis-

tance
∑

i Ni(p
i
est − piobs)

2

∑

i Ni
, (6)

where Ni is the number of cases (sum of the red and green

points in Figure 1) corresponding to a given estimated proba-

bility piest and p
i
obs is the actual observed proportion of correct

outputs in these cases. In other words, this is the average

squared distance between the blue curve and the diagonal in

Figure 1 weighted by the proportion of cases.

Table 1 shows this distance and the overall correct propor-

tion (accuracy) for different values of the root for the four data

sets. In all cases, the accuracy is best around the smallest val-

ues of the distance. The increase in accuracy from the base-

line result (root = 1) is statistically very significant (z > 4.2,
p < .000013) in all cases with larger roots except for the

NETtalk speech-to-text direction where only the roots of de-
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gree 3 (z = 2.0, p = .024) and 4 (z = 1.7, p = .047) yield
statistically significant increases.

Another feature worth noting of the data sampled in Ta-

ble 1 is that even when the degree of the root increases above

the optimal values and towards infinity, the performance of

the algorithm does not drop too much but appears to asymp-

tote slightly below the optimal performance. This is unex-

pected at a first glance because for α = 0 in Eq. (4) (cor-

responding to infinite root), the decision function is in fact

equivalent to that of Strategy 3 (the best performing of the

original 5 strategies proposed by Marchand and Damper [5]),

which performs much worse than the probabilistic method

with α = 1 in this case. Strategy 3 scores each candidate

pronunciation simply as the number of times it appears as a

possible pronunciation over the different segmentations.

However, although the estimated probabilities change

continuously for α ∈ [0, 1], the decision function itself

changes abruptly at 0. An exponent close to 0 maps every

probability to approximately 1.0 and so the top candidates

are always those corresponding to the maximum number of

the same pronunciation, as in Strategy 3. However, the small

differences of the probabilities still have an effect in ordering

the otherwise tied candidates. It can be shown that at the limit

α → 0+, this order is given by the product (rather than the

average) of the estimated probabilities of the candidates with

the same pronunciation. Thus, while the performance at de-

gree ∞ of the root is 60.53% (corresponding to Strategy 3),

the performance tends to 65.85% as α → 0+.

4. CONCLUSION

We have shown that applying a root function (with optimal

degree typically around 2–6) to the estimated probabilities

of segment pronunciations improves the accuracy of the es-

timated probability of the whole pronunciation obtained by

averaging the product of segment probabilities over different

segmentations.

This explains why the geometric mean applied in the

heuristic Strategy 11 of Polyákova and Bonafonte [2] works

so well—the geometric mean applied therein corresponds to

an n-th root, where n, the number of segments, often happens

to be within the optimal range of the degree of the root. Thus,

extending on [1], we have now shown that the current best

heuristic, Strategy 11, differs from the probabilistic method

of [1] by a series of small changes, each of which, when ap-

plied to Strategy 11, categorically improves its performance

and brings it closer to a probabilistically consistent formula-

tion. In numbers, the improvement is from 64.00% of Strat-

egy 11 (or from 66.14% if using information fusion methods

to yield a best combination of all 11 component strategies)

to 66.61% of the best variant of the probabilistic methods of

[1]. This difference of 2.61% in accuracy is equivalent to

the correct pronunciation of an additional 511 words, arising

from the improved estimation of probabilities as explained

here. The threshold for statistical significance at the 99%

confidence level is 207 words, so this improvement is clearly

statistically significant (z = 7.6, p < 10−13).

The degree of the root has been a kind of arbitrary tun-

ing parameter in the otherwise theoretically justified method

in [1]. However, in the present paper, we have shown a prin-

cipled basis for choosing its value: it should be chosen so as

to make the probability estimates as accurate as possible, that

is, to yield a straight, diagonal line in Figure 1. The question

is still open why the estimated probabilities were systemati-

cally skewed in the first place, but now we know that the root

function quite effectively accounts for this non-ideality in the

method.
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