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ABSTRACT
Modal retrieval problem can be addressed using sparse esti-
mation techniques coupled with a multigrid approach. Selec-
tion of the initial grid, in the multigrid algorithm, is a crit-
ical problem that needs satisfactory solutions. In this paper
we propose a strategy for selecting a coarse initial grid which
guarantees convergence of the algorithm even starting with a
single atom in the dictionary. The idea is to define the atoms
so as their correlation with the signal modes is greater than
a specified threshold. We show through simulations that the
proposed solution provides accurate estimations even in pres-
ence of noise. Moreover, we investigate the convergence of
the multigrid algorithm towards the true parameters.

Index Terms— modal estimation, adaptive sparse ap-
proximation, multigrid.

1. INTRODUCTION

Consider the modal retrieval problem in which the main aim
is to estimate parameters of superimposed damped sinusoids.
This topic has versatile applications in engineering, e.g., nu-
clear magnetic resonance (NMR) spectroscopy, wireless com-
munications, sonar and radar. We will use the following com-
plex modal signal model:

y(m) =

F∑
i=1

cia
m
i + e(m) (1)

for m = 0, . . . ,M − 1, where ai = e(−αi+j2πfi), with
{αi}Fi=1 the damping factors and {fi}Fi=1 the frequencies.
{ci}Fi=1 are complex amplitudes and e(m) is a white Gaus-
sian noise with variance σ2. The problem is to estimate the
set of parameters {ai, ci}Fi=1 from the observed sequence
y(m). This can be done by using three classes of possible
approaches. The first class, parametric approaches, such
as sub-space based methods [1, 2], whose use requires the
choice of the number of components (model order) F before
they can be applied to the data vector. The second class,
nonparametric approaches, such as the periodograms, which
do not require knowledge of F but they suffer from a lim-
ited spectral resolution. The third class is that of sparse

approximation methods [3, 4, 5] which may be considered
as semi-parametric. These later methods, as compared to the
previous ones, can greatly enhance the estimation accuracy
for noisy signals and their use does not necessarily require
a priori knowledge of the model order F [6, 7]. This is
why spectral analysis using sparse estimation methods has
received considerable interest in the recent years.

Sparse approximation consists in finding a decomposition
of a signal y ∈ CM as a linear combination of a limited num-
ber of elements from a dictionary Q ∈ CM×N , i.e., finding
a coefficient vector x ∈ CN that satisfies y ≈ Qx, where
Q is overcomplete (M < N). The sparsity condition on x
ensures that the underdetermined problem does not have an
infinite number of solutions. The dictionary Q can be chosen
according to its ability to represent the signal with a limited
number of coefficients or it can be imposed by the inverse
problem at hand. In the present paper, we consider dictionar-
ies whose atoms are function of some parameters. The dif-
ferent atoms of the dictionary are then formed by evaluating
this function over a grid which has to be very fine to achieve
a certain degree of resolution. This is the case for the modal
estimation problem in which the atoms are formed by dis-
cretizing the frequency and damping factor axes. In this situ-
ation, the challenge is to get a good approximation without a
prohibitive computational cost due to the huge size of the dic-
tionary. To deal with this problem we proposed a multigrid
approach [8, 7] which iteratively enhances the set of atoms
in the dictionary. The goal of the multigrid algorithm is to
improve resolution by avoiding computationally intractable
operations. The estimation begins with a coarse dictionary
which is then enhanced over several resolution levels accord-
ing to the activated atoms at each level. However, different
numerical simulations suggest that the construction of the ini-
tial dictionary (at the first level) should be done carefully in
order to ensure convergence of the multigrid algorithm to-
wards the signal modes {ai}Fi=1. In a recent work on grid
selection problems, Stoica et al. [6] proposed to use a very
fine grid to estimate the parameters of harmonic signals. As a
result, the minimum number of atoms in the dictionary have
to be greater than a threshold which is generally high. Alter-
natively, in this paper we propose to investigate the approach
which consists of starting with a very coarse dictionary con-
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taining only a single atom and we derive the condition that
ensures convergence to the true modes thanks to the multigrid
approach.

The paper is organized as follows. In section 2, we see
how the modal retrieval problem may be addressed using
sparse approximations. In section 3 we recall the principles
of multigrid dictionary refinement. In section 4 we discuss
different possible ways and conditions to construct the initial
dictionary, then we present an efficient strategy to define the
initial grid. In section 5 we present some simulation results to
show the effectiveness of the proposed strategy and the con-
vergence of the multigrd algorithm on randomly generated
modal signals. Conclusions are drawn in section 6.

2. PROBLEM FORMULATION

The data model expressed in (1) can be written in a vector
form as:

y =

F∑
i=1

cia(αi, fi) + e (2)

where a(αi, fi) is a vector of M elements:

a(αi, fi) = [1, e(−αi+j2πfi), . . . , e(−αi+j2πfi)(M−1)]T .
(3)

Let αmax be an upper bound on {αi}Fi=1 and let P the
number of points of a uniform grid covering the damping
factor interval [0, αmax]. Similarly, let K be the number of
points of a uniform grid covering the frequency interval [0, 1[.
Finally, let

Q = [q(0, 0), . . . ,q(0, (K − 1)δf ),q(δα, 0), . . . ,

q(δα, (K − 1)δf ), . . . ,q((P − 1)δα, (K − 1)δf )]
(4)

where q(α, f) = a(α,f)
||a(α,f)||2 , δα = αmax/P and δf = 1/K.

The matrix Q, called dictionary, is constructed using N =
KP modes derived from the combination of the two uniform
grids combining damping factors and frequencies. Each col-
umn {qn}N−1n=0 of Q is called atom. Thus, the dictionary Q is
obtained from a 2-D grid. Therefore, we can approximate y
in (2) by:

y ≈ Qx+ e (5)

where x ∈ CN is a sparse vector, i.e. it contains a few
non-zero elements and the rest of elements are equal to zero
or negligible. Non-zero elements are nearly equal to {ci}
and correspond to columns in Q that are equal (or close) to
{a(αi, fi)}. Thus, the modal retrieval problem can be formu-
lated as the sparse estimation of x. It should be emphasized
that by doing so, we implicitly assume that the dictionary in-
cludes the true signal modes. A first approach to ensure that
(at least approximately) is to define Q on a very fine grid re-
sulting in a high dimension dictionary. The main limitation of

Table 1. Sparse multigrid algorithm

• Input. A signal y ∈ CM , a matrix Q0 ∈ CM×N , a
scalar λ and an integer L

• Output. A sparse coefficient vector xL−1 ∈ CN .

For l = 0 up to l = L− 1

xl = SAM (Ql,y, λ)

Ql+1 = ADAPT (Ql,xl),

End For.

such an approach is to drastically increase the computational
cost. We have proposed an alternative approach which con-
sists in an adaptive refinement of the dictionary resulting in
the so-called sparse multigrid approach [7]. Its principle is
described in the next section.

3. MULTIGRID DICTIONARY REFINEMENT

To achieve a high-resolution modal estimation, a possible way
is to define a high-resolution dictionary often resulting in a
prohibitive computational burden. Rather, it is also possible
to adaptively refine a coarse one through a multigrid scheme.
This results in the algorithm sketched in table 1 where the key
step is the adaptation of the dictionary according to the previ-
ous one and the estimated vector x. The algorithm amounts
to insert (resp. remove) atoms in (resp. from) Q and to re-
run the sparse approximation algorithm. We propose two re-
finement procedures. The first one consists in inserting new
atoms in the Q matrix in the neighborhood of active ones.
In other words, we first restore the signal x(l) related to the
dictionary Q(l) by applying a sparse approximation method
(SAM) at level l. Then we refine the dictionary by inserting
atoms in between pairs of Q(l), in the neighborhood of each
activated atom and we apply again the SAM at level l + 1 to
restore x(l+1) with respect to the refined dictionary Q(l+1).
Thus we refine iteratively the dictionary until the maximum
level l = L − 1 is reached. This procedure is illustrated
in figure 1(a) where the dictionary atoms depend on two pa-
rameters f and α. The disadvantage of this procedure is that
the size of the dictionary is increasing as new atoms are con-
stantly added between two resolution levels. Hence, the com-
putational cost will be increasing. To cope with this limita-
tion, we propose a second procedure consisting in adding new
atoms as in the first procedure and deleting distant non-active
ones (fig. 1(b)).

The multigrid dictionary refinement is proposed in the
context of modal analysis. However, it is worth noticing that
this idea can be straightforwardly extended to any dictionary
obtained by sampling a continuous function over a grid. We
discuss the selection of the initial grid in the following sec-
tion.
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Fig. 1. Two multigrid schemes.

4. SELECTION OF THE INITIAL GRID

The initial dictionary in the multigrid scheme is of great im-
portance since a bad definition of it may cause completely
wrong estimation. Therefore, it should respond to at least two
conditions. First, in order to ensure convergence to the true
modes, it is necessary that each signal mode has a non negli-
gible correlation with at least one atom qn from Q. Second,
to reduce numerical complexity, the dictionary should contain
only a few atoms defined from a coarse sampling of the vari-
ables (α, f). These conditions may be fulfilled by defining
broadband atoms in the initial dictionary, viz. whatever the
number of atoms were included in the dictionary, the spec-
trum of the atoms have to cover all the spectral range [0, 1[ in
order to ensure a certain correlation with the signal modes. To
clarify this idea, let us consider a rather elementary dictionary
containing only one atom q(α0, f0) ∈ CM formed from the
signal:

q(m) = β0e
(−α0+j2πf0)m

where β0 = 1/||a(α0, f0)||2 is a normalization constant. The
spectrum of this damped atom is:

Q(f) =

M−1∑
m=0

q(m)e−j2πfm

= β0
1− e(−α0+j2π(f0−f))M

1− e(−α0+j2π(f0−f))

It can be shown that the maximum of |Q(f)| is

max
f
|Q(f)| = Q(f0) = β0

1− e−α0M

1− e−α0

and the minimum is

min
f
|Q(f)| = Q(f0 ± 1

2 ) = β0
1− (−e−α0)M

1 + e−α0

Now, we want Q(f) to cover all the spectral range in the
way that it has some correlation with any possible peaks ex-
isting in the signal, as illustrated in figure 2. Hence, given
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(a) A single narrowband atom
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(b) A single broadband atom
Fig. 2. Schematic representation of the correlation between
signal modes and a single atom.

a signal y(m) with spectrum Y (f), we want to maximize
the correlation |

∫
Q∗(f)Y (f)df | irrespective of modes po-

sition in y(m). This can be done by keeping the minimum
minf |Q(f)| greater than zero. More precisely, the minimum
correlation ρ may be controlled using the inequality:

minf |Q(f)|
maxf |Q(f)|

≥ ρ (6)

where 0 < ρ < 1. It can be verified that the solution of this
inequality is given by:

α0 ≥ ln(1 + ρ)− ln(1− ρ) (7)

This result will be used in the next section to show the con-
vergence of the multigrid algorithm even starting with a sin-
gle atom. Note that, by doing so, the limits of the frequency
(fmin = 0, fmax = 1) and the damping factor (αmin =
0, αmax = α0) are utilized to calculate the position of the
new atoms in the second level of the multigrid scheme.

5. SIMULATION RESULTS

In this section, we present results of computer simulations to
illustrate the usefulness of the proposed strategy for the con-
struction of the initial dictionary. First, we present obtained
results on a simulated noisy modal signal to prove conver-
gence to true modes. Then we analyze the convergence by es-
timating parameters of random generated modal signals. Fi-
nally, we analyze convergence to true modes with different
noise levels.
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Fig. 3. FFT of y and estimated modes, SNR1 = 20 dB.

5.1. Convergence

In the first example, the modal signal y is composed of
M = 50 samples and made up of three modes (superimposed
damped sinusoids) having the same amplitudes ci = 1. The
variance of the additive Gaussian noise is fixed such that the
SNR of mode 1 is SNR1 = 20 dB. Table 2 shows the param-
eters of the three simulated modes and their estimates using
the multigrid algorithm.

Table 2. First example: Simulated and estimated modes
True Estimates

Modes f α f α

1 0.100 0.010 0.100 0.010
2 0.480 0.000 0.480 0.006
3 0.500 0.000 0.501 0.000

The initial grid is defined using the result of the previous
section. We choose ρ = 0.635, which gives α0 = 1.5, and we
put f0 = 0.48 (recall that f0 can take any value in [0, 1[). For
the sparse approximation we use the single best replacement
(SBR) method [9] because its good performances for modal
retrieval [8]. We apply the multigrid algorithm over 50 levels;
the algorithm converges before reaching this maximum level
but the objective here is to see its behavior with extra levels af-
ter convergence. These settings will be used for all remaining
simulations. In figure 3 we present the spectrum of the simu-
lated noisy modal signal and the spectrum of each estimated
component. Figures 4(a)–(b) present the estimated frequen-
cies and damping factors at each level. It can be seen that the
algorithm converges towards the true frequencies. Concern-
ing the damping factors, two of them are very well estimated
(α1 and α3); the third is slightly biased (α̂2 = 0.006 versus
α2 = 0). Finally, the algorithm converges at level L = 40.

In order to show the importance of the definition of the
initial dictionary, let us consider the case ρ = 0.25 corre-
sponding to α0 = 0.51. For the same settings as before, the
results are shown in figure (5). We see clearly that the multi-
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(b) Estimated damping factors. The insert shows details for levels 15 to 50.

Fig. 4. Estimated parameters at each multigrid level: Conver-
gence to true parameters.

grid algorithm does not converge and fails to detect the first
mode.

5.2. Resolution

Here we simulate 1000 noise-free signals of 30 samples, each
one contains two harmonic sinusoids whose frequencies are
generated randomly. The distance between frequencies in the
same signal is forced to be greater than or equal to Fourier
resolution. Figure 6 presents the estimation error for the two
modes in each trial. The standard deviation of the estimation
error for the two modes has an order of magnitude of 10−4.
The mean squared error (MSE) is equal to 8.603× 10−8 and
9.758 × 10−8 for mode 1 and mode 2, respectively. We can
conclude that whatever the position of the signal frequencies,
the proposed strategy converges to the true modes.

5.3. Detection rate

In this simulation, the signal y contains two modes at a1 =
ej2π0.23 and a2 = e−0.1+j2π0.46 with (c1, c2) = (1, 1). The
number of samples is M = 30. The parameters of the sig-
nal are estimated by the multigrid algorithm at different noise
powers. We emphasize here that the mode a2 as compared
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Fig. 5. Estimated frequencies at each level: the multigrid al-
gorithm fails with ρ = 0.25.
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Fig. 6. Estimation error of 1000 randomly generated modal
signals. Mode 1 (top), mode 2 (bottom).

to a1 vanishes rapidly because of its damping factor. We do
100 Monte Carlo trials for each noise level. Then we compute
the rate of successful estimations (convergence rate) at each
level. The obtained results are presented in figure 7. We can
see that, thanks to the proposed strategy, the algorithm con-
verges to true modes with a rate upper than 80% for an SNR1

more than 9 dB; and the rate of convergence is almost equal
to 100% with an SNR1 upper than 18 dB.

6. CONCLUSION

We proposed an efficient strategy to select the initial grid in
the sparse multigrid modal estimation approach. The pro-
posed solutions consist in starting estimation with a dictio-
nary only containing one atom. Then, it was shown, through
simulations, that this strategy provides accurate estimations,
guarantees convergence to true damped sinusoids parameters
and ensures to have a modal dictionary still be coarse. As
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Fig. 7. Monte Carlo trials: convergence rate to
(α1, f1) = (0.00, 0.23) and (α2, f2) = (0.1, 0.46).

future work, we are planing to theoretically study the conver-
gence of the multigrid approach.
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