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ABSTRACT
In this paper, we present a robust data classification method
based on an ensemble of feature subspaces. The objective is to
improve or preserve the performances of a decisional system
in the case of perturbations due to noise or sensor degradation.
The proposed method is to combine a set of classifiers each of
which is established in the corresponding feature subspace re-
sulting from projections of the initial full-dimensional space,
expecting that most of them are not impaired. The counterpart
of the expected robustness is a performance decrease for non-
impaired data. In this context, three classification methods
are tested, One-class SVM, Kernel PCA and Kernel ECA, to
study the robustness of the final decision. The results obtai-
ned in textured image segmentation demonstrate that our ap-
proach is efficient in a nonstationary environment.

Index Terms— One-class classification, ensemble me-
thod, decision, One-class SVM, Kernel PCA, Kernel ECA,
textured image segmentation

1. INTRODUCTION

The diagnosis or monitoring of a complex system can be
considered as a classification problem. When no analytical
model of the system is known, the decision rule can be lear-
ned based on a training set of samples coming from the sys-
tem. Each sample is represented by a feature vector obeying
a joint probability distribution that depends on the state of the
system. Then the established decision rule is used to classify
new data. In general, the decision rule performs well if the
new data obeys the joint distribution of the training samples.
In practice, one part of the system measurements may be per-
turbed due to the presence of noise or to the failure of some
sensors. As a consequence, the feature vector no longer obeys
the trained distribution. In such situation the established de-
cision rule can not guarantee to classify data correctly and its
performance may significantly decreases.

In order to preserve the performance of the decision rule
under serious perturbations, the proposed method is to make
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the final decision by combining a set of classifiers each of
which is established in a corresponding feature subspace.
These feature subspaces are defined using a restricted part
of the system measurements, expecting that most of them
are unperturbed. There are many methods to generate fea-
ture subspaces in the literature, such as the random subspace
method [1], the random feature-subset selection in a nonsta-
tionary environment [2] and so on. And the ensemble method
[3] is an appropriate method to implement this idea.

In this study the monitoring problem is considered as a
one-class decision problem. For most of one-class classifica-
tion methods, the main idea is to train a model so that its res-
ponse to a sample drawn from the learn class obeys some spe-
cific condition (i.e. the response is positive). In recent years,
the theory of SVM (Support Vector Machine) is the most wi-
dely used, of which One-class SVM proposed by Schölkopf
et al. [4] is very suitable to tackle the one-class classification
problem. The objective of One-class SVM is to find an opti-
mum hyperplane to separate the data from the origin in fea-
ture space. Another kind of method is Kernel PCA (principal
component analysis) [5] using the kernel trick to handle the
nonlinear data distribution. Its strategy is to extract the princi-
pal axes of the data distribution in feature space and to use the
squared distance to these principal axes as a novelty measure.
Hoffmann [6] has demonstrated that this method has lower
classification errors and tighter decision boundary than One-
class SVM. Similar to Kernel PCA, Jenssen proposed a new
method named Kernel ECA (entropy component analysis) [7]
based on the Renyi entropy of the input data and their results
are also very encouraging. In this paper, we will test the three
methods and compare their performances.

This paper is organized as follows : Section 2 briefly
reviews the principals of classification methods (One-class
SVM, Kernel PCA and Kernel ECA) and the definition of no-
velty measure. Section 3 presents the proposed method based
on feature subspaces and the testing procedure for the study
of robustness. Section 4 reports the experiments and results,
and the study is concluded in Section 5.
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2. PRINCIPLES OF CLASSIFICATION METHODS

2.1. One-class SVM (OSVM)

Suppose that Xm ⊆ Rm is an initial representation space
of dimension m and An = {xi ∈ Xm|i = 1, . . . , n} is a set
of n training samples. The principle of One-class SVM propo-
sed by Schölkopf et al.[4] is to define a function f that takes
the value +1 in a subspace S ⊂ Xm capturing most of the
samples drawn from an unknown probability distribution and
−1 elsewhere. Its strategy is first to map the training samples
An into the feature space by a nonlinear transformation φ for
which the inner product of its images can be computed by
evaluating some simple kernel K(xi, xj) = 〈φ(xi), φ(xj)〉,

such as the gaussian kernel K(xi, xj) = e−
‖xi−xj‖

2

2σ2 that is
widely used. Unless otherwise noted, a gaussian kernel with
width σ has been used with all studied methods. The function
is defined so that one part of the samples (with a proportion
of 1 − ν) are separated from the origin, in the feature space,
by a hyperplane with maximum margin.

In order to determine the maximum margin hyperplane,
we need to deduce its normal vector w and a threshold ρ by
solving the following quadratic program :{

minw,ξ,ρ : 1
2‖w‖

2 + 1
νn

∑n
i=1 ξi − ρ

subject to : 〈w, φ(xi)〉 ≥ ρ− ξi, ξi ≥ 0 (1)

The dual problem can be expressed as follows :{
minα : 1

2
∑n
i,j=1 αiαjK(xi, xj)

subject to : 0 ≤ αi ≤ 1
νn ,

∑n
i=1 αi = 1 (2)

and the decision function is given by :

f(x) = sign

( n∑
i=1

αiK(xi, x)− ρ
)

= sign
(
〈w, φ(x)〉 − ρ

)
(3)

2.2. Kernel PCA (KPCA)

KPCA [5] can be seen as a nonlinear extension of traditio-
nal PCA [8]. The first stage is also to map the training samples
An into the feature space by a nonlinear transformation φ,
and then the traditional PCA is performed. A simple kernel
is used again to solve the problem of inner product, hence an
eigenvector v of the covariance matrix in this feature space is
expressed by :

v =
n∑
i=1

ṽiΦ̃(xi) (4)

with

Φ̃(xi) = φ(xi)−
1
n

n∑
r=1

φ(xr) (5)

There ṽi are the components of a vector ṽ that is an eigen-
vector of the (n × n) matrix K̃ defining by K̃(xi, xj) =

〈Φ̃(xi), Φ̃(xj)〉. Requiring ‖v‖ = 1, we thus have v =
λ−

1
2
∑n
i=1 ṽiΦ̃(xi), where λ is the eigenvalue of K̃ cor-

responding to ṽ.

2.3. Kernel ECA (KECA)

KECA, developed by Jenssen [7], is a new data transfor-
mation method based on the Renyi quadratic entropy [9] re-
lative to KPCA. In KECA, the data transformation is perfor-
med by projecting onto these KPCA axes not corresponding
to the top eigenvalues or eigenvectors of the kernel matrix, but
contributing more to the entropy estimate.

The Renyi entropy is given by H(p) = − log
∫
p2(x)dx.

Since the logarithm is a monotonic function, we can concen-
trate on the quantity V (p) =

∫
p2(x)dx = E[p(x)], where

p(x) is the probability density of the training setAn and it can
be evaluated by p̂(x) = 1

n

∑
xi∈An Kσ(x, xi) (Parzen kernel

estimator if Kσ is adequately normalized). Hence V̂ (p) can
be estimated by,

V̂ (p) = 1
n

∑
xi∈An

p̂(xi) = 1
n2 1TK1

= 1
n2 1TEΛET 1 =

n∑
i=1

(
√
λ̂ieTi 1)2 (6)

where 1 is a all-ones vector (n×1), and K is the kernel matrix
(n×n) with general termKσ(xi, xj) = 〈φ(xi), φ(xj)〉, which
is eigendecomposed as K = EΛET .

2.4. Reconstruction error

The methods KPCA and KECA could be applied in the
one-class data classification task. Herein the reconstruction
error ([10] and [6]) is proposed as a novelty measure. The
decision boundaries are determined by the equipotential lines
or surfaces of the reconstruction error computed in the feature
space. The reconstruction error is defined by :{

εKPCA = 〈Φ̃ · Φ̃〉 − 〈Ũ Φ̃ · Ũ Φ̃〉
εKECA = 〈φ · φ〉 − 〈Uφ · Uφ〉

(7)

where Ũ contains q eigenvectors corresponding to the q lar-
gest eigenvalues of K̃, and U contains the q eigenvectors of
K which contribute most to Renyi entropy. The projection of
a new observation x onto the jth eigenvector ũj (resp. uj) is
then measured by,{

εKPCAj (x) = 〈Φ̃(x), ũj〉
εKECAj (x) = 〈φ(x),uj〉, j = 1, . . . , q

(8)

Combining equations 7 and 8, we can get the expressions of
reconstruction errors for a new observation x,{

εKPCA(x) = K̃(x, x)−
∑q
j=1

(
εKPCAj (x)

)2

εKECA(x) = K(x, x)−
∑q
j=1

(
εKECAj (x)

)2 (9)
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The classification of x is then done by comparing εKPCA(x)
(resp. εKECA(x)) with a threshold.

3. PROPOSED METHOD

As mentioned in section 1, the proposed method is based
on making decisions in some feature subspaces in which most
of features are unperturbed so that corresponding classifier
performances are preserved in the case of perturbed or nons-
tationary environment. First, L feature subspaces are genera-
ted by randomly selecting d features from m features in the
full-dimension space {X d` ⊂ Xm|` = 1, . . . , L}. The value
of d can be randomly chosen for each subspace or determined
by experience. Then we build a classifier h` corresponding
to each feature subspace X d` and finally the final decision is
obtained by combining these classifiers. Therefore, the final
decision rule D(x) for an observation x can be simply written
as,

D(x) = sign
( L∑
`=1

h`(x(`))− θ
)

(10)

where h`(x(`)) are established respectively according to
OSVM, KPCA and KECA,

hOSVM` (x(`)) = 〈w(`), φ(x(`))〉
hKPCA` (x(`)) = εKPCA(x(`))
hKECA` (x(`)) = εKECA(x(`))

(11)

θ is a threshold. The robustness of final decision D(x) will be
tested through the following procedure.

We note ω0 as the normal class and ω1 as the novel class.
We construct a training set An (consisting of n observations
from ω0), two sets Tn0 (consisting of n0 observations from
ω0) and Tn1 (consisting of n1 observations from ω1). And we
note that,{

D(x) = 1 label ω0 is attributed to x
D(x) = −1 label ω1 is given to x

Since the testing procedures of these three methods are simi-
lar, here we consider only OSVM as example.

– For a given couple of parameter (ν, σ)

1. To train the classifiers hOSVM` :
α

(`)
i and thus w(`) were learned in A(`)

n (associa-
ted to the feature subspace X d` ) for ` = 1, . . . , L

2. To determine the threshold θ :
∀ xk0 ∈ Tn0 , the threshold θ = ρα(ν, σ) is found
such that D(xk0) = sign

(∑L
`=1 h

OSVM
` (x(`)

k0
)−

ρα(ν, σ)
)

satisfies a reject rate α = P [D(xk0) =
ω1/xk0 ∈ ω0] fixed in advance.

3. To estimate the error rate β :
∀ xk1 ∈ Tn1 , the rule D(xk1) with θ = ρα(ν, σ)
found above is applied to estimate the error rate
βα(ν, σ) = P [D(xk1) = ω0/xk1 ∈ ω1]

– To search the optimum parameter (ν∗, σ∗) such that
βα(ν∗, σ∗) = min

ν,σ
(βα(ν, σ)) under fixed α. The

above-step were repeated to perform a grid search for
different values of (ν, σ). Then (ν∗, σ∗, θ∗) are used
with the following test images.

For the methods KPCA and KECA based on the reconstruc-
tion error, the optimum parameter to be found is (q, σ). The
threshold is the upper bound of the reconstruction error that
is determined so that θ∗ = ρ∗α(ν∗, σ∗) under α fixed. The
performances are finally studied on new data sets which are
independent of An, Tn0 and Tn1 .

4. EXPERIMENTS

The textured image segmentation is an appropriate appli-
cation for evaluating our proposed method because it effecti-
vely simulates the nonstationary environment at the bounda-
ries. All the test images (Fig.1) are of size 256×256, and each
of them is composed of the texture and the uniform noise.
Fig.2-a illustrates the reference image of the ideal segmenta-
tion : black area is the texture representing the normal class
ω0 and white area is the noise ω1. The two areas ω0 and ω1 are
separated by complex boundaries. Fig.2-b illustrates the refe-
rence image of the different regions : central region (in blank)
and boundary region (in white). The textures to be tested are
extracted from the Brodatz album [11] (Fig.1-a) or generated
by using Markov fields models [12] (Fig.1-b and 1-c).

a b c
Fig. 1: Test images

a b
Fig. 2: Reference images

In the case of textured image segmentation, the data to be
classified are the pixels of the image. Each pixel can be descri-
bed by a feature vector whose components are the gray levels
of pixels located in a given neighborhood of this pixel. In the
following experiments, a squared window 5 × 5 centered on
the pixel considered is selected as the initial representation
space Xm (m = 5 × 5 = 25). We select randomly L = 120
feature subspaces which is composed of L3 feature subspaces
of dimension d = 3,L5 feature subspaces of dimension d = 5
and L7 feature subspaces of dimension d = 7 among m = 25
in Xm. Three groups of (L3, L5, L7) are tested respectively,
they are (20, 40, 60), (40, 40, 40) and (60, 40, 20).
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In order to illustrate the advantage of the proposed method
based on the feature subspaces, we also applied the OSVM
decision rule based on the initial full-dimension space Xm
for comparison. The application and testing procedure are the
same as above-presented in section 3. This method will be de-
noted OSVM_Xm while the method based on the subspaces
will be denoted simply OSVM.

The four methods that need to be evaluated for their per-
formances are OSVM_Xm, OSVM, KPCA and KECA. For
each test image, the pixels of image are distinguished in two
types : one located in the central region (in black in Fig.2-
a) and the other located in the boundary region (in white in
Fig.2-a). These two types of pixels are defined by,

– Central region : a set of pixels whose all 24 neighbors
belong to the same class as itself.

– Boundary region : a set of pixels whose one part of
neighbors are from the other class as compared to it-
self.

The performance of each method is evaluated by estimating
four probabilities of errors as following :{

αC = P [D(x) = ω1/x ∈ Central ∩ ω0]
βC = P [D(x) = ω0/x ∈ Central ∩ ω1]

and
{
αB = P [D(x) = ω1/x ∈ Boundary ∩ ω0]
βB = P [D(x) = ω0/x ∈ Boundary ∩ ω1]

The Table 1 and Table 2 represent these four probabilities of
errors for each test image and for each method. The parame-
ters and thresholds of the rules were calculated by the setsAn,
Tn0 , Tn1 with the size of n = 500, n0 = 3000, n1 = 10000
under α = 0.01 and α = 0.05 fixed (Cf. section 3).

For both α = 0.01 and α = 0.05, according to the va-
lues of the error rate αC and βC in the central region, we
can observe that the method OSVM_Xm is usually more
efficient than those based on the subspaces. In contrast, in
the boundary regions the methods based on the subspaces
become more efficient with regards to the decision of the
texture (normal) class (Cf. the values of αB), in particular
the methods KPCA and KECA. Besides, the performance of
each method based on the subspaces is related to the pro-
portion of (L3,L5,L7), the results illustrate that in boundary
regions, with the increase of proportion of low-dimensional
feature subspaces (L3), the error rates αB decrease while the
error rates βB increase. The increase of proportion of high-
dimensional feature subspaces (L7) leads to contrary results.
Figure 3 shows the best results in terms of αB .

5. CONCLUSION

In this paper, we presented a robust data classification me-
thod combining a set of classifiers associated to the corres-
ponding feature subspaces. The performance of the proposed
method has been tested on the textured image segmentation,
based on three classification methods One-class SVM, Ker-
nel PCA and Kernel ECA respectively. The results indicated

that the methods based on the subspaces preserve better the
performance of decision compared with those based on the
initial space, since the initial space no longer correctly repre-
sents the data in the boundary region due to the presence of
perturbations. While the counterpart of the robustness has a
relative performance decrease for unperturbed data (i.e. in the
central region). In addition, the dimension of subspaces (the
value of d) and the number of subspaces of each dimension
can be chosen to adjust the tradeoff between the error rates
βB and αB in boundary or perturbed regions.

Fig. 3: Best results on images a, b and c of Fig.1 in terms
of αB for α = 1% and 5%
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Table 1: The error rate (%) with α = 0.01

Image Fig.1-a (L3,L5,L7) αC βC αB βB

OSVM_X m 0.49 0.00 72.36 0.58
(20,40,60) 0.46 0.06 37.62 2.44

OSVM (40,40,40) 0.46 0.17 33.93 2.97
(60,40,20) 0.50 0.38 31.77 3.86
(20,40,60) 0.69 0.13 27.45 4.36

KPCA (40,40,40) 0.73 0.29 25.43 5.13
(60,40,20) 0.73 0.62 22.41 6.49
(20,40,60) 0.70 0.17 26.31 4.74

KECA (40,40,40) 0.70 0.39 23.92 5.83
(60,40,20) 0.71 0.95 20.03 7.98

Image Fig.1-b (L3,L5,L7) αC βC αB βB

OSVM_X m 0.67 0.00 67.24 0.56
(20,40,60) 0.65 0.06 49.17 1.22

OSVM (40,40,40) 0.53 0.19 44.53 1.62
(60,40,20) 0.67 0.53 42.27 2.46
(20,40,60) 0.64 0.40 33.62 2.93

KPCA (40,40,40) 0.57 0.87 30.70 3.63
(60,40,20) 0.44 1.78 28.53 5.67
(20,40,60) 0.66 0.39 33.38 2.94

KECA (40,40,40) 0.59 0.87 30.89 3.61
(60,40,20) 0.54 1.87 28.09 5.75

Image Fig.1-c (L3,L5,L7) αC βC αB βB

OSVM_X m 0.97 0.11 58.87 1.79
(20,40,60) 0.77 2.12 33.25 7.32

OSVM (40,40,40) 0.80 3.28 29.99 9.01
(60,40,20) 0.85 5.20 28.11 11.71
(20,40,60) 0.65 4.16 23.27 11.13

KPCA (40,40,40) 0.61 5.57 22.24 12.38
(60,40,20) 0.62 8.78 21.51 15.89
(20,40,60) 0.65 4.40 22.69 11.24

KECA (40,40,40) 0.58 6.60 20.82 13.86
(60,40,20) 0.60 10.78 19.71 18.19
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