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ABSTRACT

In this paper, we consider the identifiability of second-order
blind separation of multidimensional components. By maxi-
mizing the likelihood for piecewise-stationary Gaussian data,
we obtain that the maximum likelihood (ML) solution is
equivalent to joint block diagonalization (JBD) of the sample
covariance matrices of the observations. Small-error anal-
ysis of the solution indicates that the identifiability of the
model depends on the positive-definiteness of a matrix, which
is a function of the latent source covariance matrices. By
analysing this matrix, we derive necessary and sufficient con-
ditions for the model to be identifiable. These are also the
sufficient and necessary conditions for JBD of any set of real
positive-definite symmetric matrices to be unique.

Index Terms— Joint block diagonalization, identifiabil-
ity, uniqueness, multidimensional ICA

1. INTRODUCTION

In this paper, we discuss the identifiability of second-order
multidimensional ICA (MICA). We show that the identifia-
bility analysis provides necessary and sufficient conditions
for the existence of a unique solution to joint block diago-
nalization (JBD) of a set of real, positive-definite symmetric
matrices.

The relationship between blind separation and JBD has
been established recently in various works [1, 2, 3]. For the
one-dimensional case, second-order blind separation of sta-
tionary sources has been shown [4] to be solvable by joint
diagonalization (JD) of several covariance matrices, as long
as the covariances of the different sources, at different time
lags, are not proportional. Gutch et al. [5] have recently pre-
sented analogous conditions for the multidimensional case.
In [5], the discussion is based on whitened second-order
wide-sense stationary sources and the proofs of the theorems
in [5, Sec. 1.3] are omitted. On the other hand, De Lath-
auwer [6] has proved that existence and uniqueness of JBD,
up to trivial indeterminacies and for Q > 2 matrices, are guar-
anteed with probability one when the entries of the source
covariance matrices are drawn from a continuous probability
density function.

In this paper, we take a route different than that of [5].
Our analysis is based on multidimensional ICA of piecewise-
stationary sources. We show in Sec. 2 that the maximum-
likelihood solution, for Gaussian data and non-orthogonal
mixing matrix (that is, avoiding any whitening constraints)
can be obtained by minimizing a contrast function, which is
a JBD criterion. Small-error analysis of this contrast function
leads to the observation that identifiability of the model relies
on the invertibility of a matrix H which connects the relative
gradient with the perturbations due to finite data. In [7, 8], a
closed-form expression for the error covariance was derived,
based on the assumption that H was invertible. In [9], a
quasi-Newton algorithm which minimizes the contrast func-
tion was proposed. The quasi-Newton step at each iteration
is based on calculating the inverse of H. However, the con-
ditions on the data for H to be invertible have not yet been
discussed. In Sec. 3 the invertibility of matrix H is stud-
ied, and the problem is simplified to determining when a ma-
trix, which is a function of the source covariance matrices, is
positive-definite. The derivation is concluded with a theorem,
which states sufficient and necessary conditions for the iden-
tifiability of the model, in terms of the latent unnormalized,
non-whitened, source covariance matrices. A short discussion
of our results follows, in Sec. 4.

2. PROBLEM FORMULATION

The data model which motivates our analysis is as follows.
Consider T observations of an m × 1 vector x(t), modeled
as a sum of n ≤ m components x(t) =

∑n
i=1 xi(t). It is

assumed that the ith component xi(t) (an m × 1 vector) has
an underlying structure of xi(t) = Aisi(t), where Ai, the ith
column block of the m×m matrix A, has dimension m×mi.
Vector si(t) has dimension mi × 1 and

∑n
i=1 mi = m, such

that A = [A1, . . . ,An], s(t) = [s†1(t), . . . , s
†
n(t)]

†, and

x(t) = As(t) 1 ≤ t ≤ T . (1)

Let us consider a piecewise stationary model as follows. The
observation interval [1, T ] is partitioned into Q domains Dq ,
q = 1, . . . , Q, where domain q contains nq samples, so that∑Q

q=1 nq = T . We assume that s(t) is independent of s(t′)
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if t 6= t′ and that, for any t ∈ Dq , s(t) has zero mean and
covariance matrix R

(q)
S . The linear model (1) implies that

R
(q)
X = AR

(q)
S A†, where R

(q)
X is the covariance matrix of

x(t) for t ∈ Dq . The model of dependent sources corre-
sponds to the block-diagonal structure

R
(q)
S

4
=


R

(q)
S,11 0 0

0
. . . 0

0 0 R
(q)
S,nn

 , (2)

where R(q)
S,ii is the mi×mi covariance matrix of si(t) for t ∈

Dq . The set {R(q)
S }

Q
q=1 is such that it cannot be further jointly

block diagonalized into smaller blocks. Hence, {R(q)
S }

Q
q=1 is

JBD-irreducible. This notion of irreducibility is analogous
to that proposed by [3, 10]. A formal definition of the finest
JBD-irreducible structure can be found in [11, Theorem 1].

It is shown in [7, 8] that separation, up to the unavoid-
able scale and permutation indeterminacies, can obtained by
minimizing the contrast function

C(A)
4
= 〈D(A−1RXA−†,bdiagm{A

−1RXA−†})〉 , (3)

where D(·, ·) denotes the Kullback-Leibler [12] divergence
between any two m × m positive-definite matrices. 〈·〉 de-
notes a weighted average of any sequence indexed by q

with weights nq , 〈M〉 = 1
T

∑Q
q=1 nqM

(q). R
(q)

X
4
=

1
nq

∑
t∈Dq

x(t)x†(t) denotes the empirical counterpart and

natural estimate of R(q)
X , and bdiagm{M} returns the block-

diagonal matrix with block pattern m
4
= [m1, . . . ,mn]

†

which has the same diagonal blocks as M and has zeros in
the off-diagonal blocks. Therefore, minA C(A) can be un-
derstood as joint block diagonalization (JBD) of the set of
covariance matrices {R(q)

X }
Q
q=1 by matrix A−1. We denote

the minimizer of (3) as Â. If s(t) is normally distributed,
then the solution of (3) yields the ML estimate of A [7, 8].

The first step in studying the performance of component
separation using (3) is defining suitable error terms. The esti-
mation error in the ith component can be written as [7, 8]

x̂i(t)− xi(t) = −
n∑

j 6=i

Ejixi(t) +

n∑
j 6=i

Eijxj(t) , (4)

where the m × m matrices Eij , Eji represent the pairwise
error terms between component i and j. The component es-
timates are obtained from x̂i(t) = P̂ ix(t), where P i are
the m×m oblique projection matrices onto Span(Ai) along
Span(Aj) for all j 6= i, and P̂ i are their estimates, with Ai

replaced with Âi, etc. Similarly, we define Πi = AiA
]
i ,

the orthogonal projection onto Span(Ai), where A]
i de-

notes the Moore-Penrose pseudo-inverse (22) of Ai. Then,

Eij = (P̂ i − P i)Πj [7, 8]. The added value of work-
ing with projections instead of the mixing matrix is that the
projection matrices do not suffer from the scale ambiguity
and thus also Eij are well-defined, in this sense. It can be
shown [7, 8] that in the small-errors regime, these errors
can be expressed as a function of the m × m model cross-
covariance matrices R

(q)
XiXj

and their finite-sample counter-

parts R
(q)

XiXj

4
= 1

nq

∑
t∈Dq

xi(t)x
†
j(t), as follows:[

gij

gji

]
= −H ·

[
vec{Eij}
vec{Eji}

]
+ higher-order terms , (5)

where gij = 〈vec{R]
XiXi

RXiXj}〉 is the vectorized (i, j)th
block of the relative gradient of C(A) [7, 8];

H =

[
Hij Tm,m

Tm,m Hji

]
(6)

is a symmetric matrix with

Hij = 〈RXjXj
⊗R]

XiXi
〉 , (7)

and Tm,m is the commutation matrix [13], see Appendix A.
The vec{·} operator stacks the columns of a p × q matrix
into a pq × 1 vector. ⊗ denotes the Kronecker product [14].
As can be seen from (5), for the parameter estimates to be
consistent, that is, for the covariance of the errors Eij to de-

crease as the cross-correlation between components R
(q)

XiXj

approaches zero, matrix H must be full-rank. This observa-
tion can be rephrased as the requirement for the identifiability
of the parametric model. Since the solution of (5) is related to
JBD (3), the invertibility of H is also related to the existence
of a unique solution to the JBD. A counter-example is given
in Sec. 4.

3. INVERTIBILITY OF H

As a first stage in the analysis of H, we state that the inverse
of H, when exists, is given by

H−1 = H]
Π +H−HΠ , (8)

where

HΠ =

[
Hij T Πij

m,m

T Πji
m,m Hji

]
, (9)

and
T Πij
m,m

4
= (Πj ⊗Πi)Tm,m(Πi ⊗Πj) . (10)

It is important at this point to mention that in [7, 8] it is
shown that Cov(

[
gij
gji

]
) = 1

T HΠ and asymptotically, that is,

T → ∞ with nq

T fixed ∀q, Cov(
[

vec{Eij}
vec{Eji}

]
) = 1

T H
]
Π. That

is, if a solution to (5) exists, then HΠ and H]
Π are covari-

ance matrices of rank 2mimj . This rank is due to the fact
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that gij and Eij each reflect a correlation between an mi-
dimensional element and an mj-dimensional one. Therefore,
the problem of finding the condition for the invertibility of H
can be rephrased as finding the condition for HΠ and H]

Π to
be positive-semidefinite symmetric with rank 2mimj .

In order to further simplify our task, we now break down
HΠ and H]

Π into more basic components. With some alge-
bra, HΠ can be rewritten as

HΠ = IARA†I , (11)

where I =
[
Im2×m2 0m2×m2

0m2×m2 T m,m

]
is always invertible, A =[

Aj⊗A]†
i 0m2×mimj

0m2×mimj
A]†

j ⊗Ai

]
is rank-deficient ∀n > 1, and

R =

[
〈RS,jj ⊗R−1

S,ii〉 Imimj×mimj

Imimj×mimj
〈R−1

S,jj ⊗RS,ii〉

]
is a 2mimj × 2mimj symmetric matrix. If R is invertible,
that is, R has rank-2mimj , then

H]
Π = IA]†R−1A]I† . (12)

Notation (12) can be verified by checking the four properties
of the pseudoinverse (22). We have thus reduced the condi-
tions on HΠ or H]

Π to the requirement that R be positive-
definite and symmetric. The conditions for R to be strictly
positive-definite and symmetric are given by the following
theorem, whose proof is given in Appendix B.

Theorem 1. Given {R(q)
S,ii}

Q
q=1 and {R(q)

S,jj}
Q
q=1, Q > 2, two

JBD-irreducible sequences of positive-definite symmetric ma-

trices, then
[
〈RS,jj⊗R−1

S,ii〉 I

I 〈R−1
S,jj⊗RS,ii〉

]
is positive-definite

if

1. mi 6= mj , or

2. mi = mj and there does not exist an mi×mi invertible
matrix M such that ∀q,

R
(q)
S,jj = MR

(q)
S,iiM

† . (13)

Note that Theorem 1 is applicable for any normaliza-
tion of R(q)

S,jj , regardless of the arbitrary block-diagonal scale
ambiguity between A and s(t). We have thus obtained all
the necessary and sufficient conditions for R to be positive-
definite and symmetric, and thus also for H]

Π and H−1 to
have the required rank.

It remains now to prove (8). The proof is based on
showing that the term which we denote “H−1” indeed obeys
H−1H = I = HH−1. Given (8),

H−1H = (H]
Π +J )(HΠ +J )

= H]
ΠHΠ +H]

ΠJ +JHΠ +JJ (14)

HH−1 = (HΠ +J )(H]
Π +J )

= HΠH]
Π +JH]

Π +HΠJ +JJ , (15)

where J 4
= H−HΠ. From (6), (9) and (10),

J =

[
0m2×m2 T m,m(I −Πi ⊗Πj)

T m,m(I −Πj ⊗Πi) 0m2×m2

]
.

For the fourth term in (14) and (15),

JJ =

[
I −Πj ⊗Πi 0m2×m2

0m2×m2 I −Πi ⊗Πj

]
(16)

due to (20). For the first term on the RHS of (14) and (15),
one can use the explicit forms (11) and (12) to obtain

H]
ΠHΠ =

[
Πj ⊗Πi 0m2×m2

0m2×m2 Πi ⊗Πj

]
, (17)

and H]
ΠHΠ = HΠH]

Π due to the symmetry of HΠ. For the
second and third terms on the RHS of (14) and (15), combin-
ing (11) or (12) with the symmetry of J yields

JHΠ = HΠJ = JH]
Π = H]

ΠJ = 02m2×2m2 . (18)

Substituting (17), (18) and (16) in (14) and (15) yields
HH−1 = I = H−1H. This confirms the desired iden-
tity (8) and thus the invertibility of H. Note that the deriva-
tion of (17) and (18) has relied on the fact that the decomposi-
tion (12) exists; that is, on the assumption that R is invertible.
Hence, the invertibility of H follows from Theorem 1.

4. DISCUSSION

In the above, we have obtained necessary and sufficient condi-
tions for the identifiability of the MICA model of Sec. 2. Our
analysis was based on the observation that the consistency of
errors between the model parameters and their corresponding
estimates (i.e., solutions of (3)) depends on the invertibility
of the 2-by-2 symmetric block matrix1 H. Strictly speaking,
since these conditions are based on small-error analysis, they
imply local identifiability.

As a counter example, let us consider the case that The-
orem 1 does not hold. Namely, that R(q)

S,jj = MR
(q)
S,iiM

†

∀q. Given two statistically independent components of the
same dimension, such that i = 1, j = 2, let us define two
new vectors y1(t) = 1√

2
(s1(t) −M−1s2(t)) and y2(t) =

1√
2
(s1(t) + M−1s2(t)), and y(t) = [y1(t) ; y2(t)]. Then,

R
(q)
Y =

[
R

(q)
S,11 0

0 R
(q)
S,11

]
∀q. In other words, one can obtain

exact JBD of the set of covariance matrices of these compo-
nents without actually statistically separating them. In this
case, the errors terms Eij and their covariances may be arbi-

trarily large, regardless of how close R
(q)

XiXj
are to their (zero)

mean.
1The analogous matrix in [7, Eq. (22)] is equal to (9) up to right- and left-

multiplication by the invertible matrix
[
0
m2×m2 I

m2×m2

Tm,m 0
m2×m2

]
. The current

notation is compatible with [8].
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The derived Theorem 1 is similar to that given in [5] and
to the claim in [15, Sec. 2.2], without the whitening and or-
thonormality constraints.

Theorem 1 is analogous to the notion of “simplicity”, as
proposed by [5]. As argued in [5], all the statistically inde-
pendent sources for which (13) holds with equality should be
gathered into one ‘simple’ factor, and the decomposition of s
into such ‘simple’ factors is unique, up to an arbitrary invert-
ible mixture within each such factor. However, unlike [5], we
obtain Theorem 1 as a by-product of our performance analy-
sis, and without any orthogonality prerequisite on the mixing
or de-mixing matrix. We also provide a full proof of the The-
orem.

It should be noted that Theorem 1 reduces, in the one-
dimensional case, to the condition that the covariance matri-
ces of the different sources, as a function of the domain index,
should not be proportional [4].

A. KRONECKER PRODUCT, VEC AND
PSEUDOINVERSE PROPERTIES

For ease of reference, we list some useful algebraic proper-
ties. These properties can be found in [13] and [14]. The
mn×mn commutation matrix Tm,n [13] is such that

vec{M †} = Tm,nvec{M} (19)

for any m×n matrix M . The commutation matrix is isomet-
ric and satisfies Tn,mTm,n = I . Hence, Tn,m = T −1

m,n. One
also has Tn,m = T †m,n. For any two matrices Mm×n and
Np×q ,

N ⊗M = Tp,m(M ⊗N)Tn,q (20)

and
Tm,p(N ⊗M) = (M ⊗N)Tn,q . (21)

Definition A.1. The Moore-Penrose pseudoinverse of a ma-
trix M is the matrix M ] that obeys

MM ]M = M , MM ] = (MM ])† (22a)

M ]MM ] = M ] ,M ]M = (M ]M)† . (22b)

B. INVERTIBILITY OF HΞ

Let Ξ
(q)
i and Ξ

(q)
j , q = 1, . . . , Q denote invertible symmetric

matrices of dimensions mi ×mi and mj ×mj , respectively,
and

HΞ =

[
〈Ξj ⊗Ξ−1

i 〉 I

I 〈Ξ−1
j ⊗Ξi〉

]
. (23)

We look for sufficient and necessary conditions on the se-
quences {Ξ(q)

i }
Q
q=1 and {Ξ(q)

j }
Q
q=1 for the strict positivity:

HΞ > 0.

HΞ is positive-definite if and only if x†HΞx = 0 for
all non-zero vectors x with real entries. Since nq > 0, the
condition x†HΞx = 0 is equivalent to x†H(q)

Ξ x = 0 ∀q,
where each

H(q)
Ξ

4
=

[
Ξ

(q)
j ⊗Ξ

−(q)
i I

I Ξ
−(q)
j ⊗Ξ

(q)
i

]

is always singular. Without loss of generality, we can look for
x in the form

x =

[
vec{M}
−vec{N}

]
,

where M and N are mi×mj matrices. With the factorization

H(q)
Ξ =

[
Ξ

1
2
(q)

j ⊗Ξ
− 1

2
(q)

i

Ξ
− 1

2
(q)

j ⊗Ξ
1
2
(q)

i

][
Ξ

1
2
(q)

j ⊗Ξ
− 1

2
(q)

i

Ξ
− 1

2
(q)

j ⊗Ξ
1
2
(q)

i

]†
we have

x†H(q)
Ξ x =

∥∥∥[Ξ
1
2
(q)

j ⊗Ξ
− 1

2
(q)

i

Ξ
− 1

2
(q)

j ⊗Ξ
1
2
(q)

i

]† [
vec{M}
−vec{N}

] ∥∥∥2

and therefore, the condition for positive-definiteness becomes[
Ξ

1
2
(q)

j ⊗Ξ
− 1

2
(q)

i Ξ
− 1

2
(q)

j ⊗Ξ
1
2
(q)

i

] [
vec{M}
−vec{N}

]
= 0 ∀q .

Using vec{MXN} = (N †⊗M)vec{X} [14] for any ma-
trices M ,N ,X of compatible dimensions, the latter can be
rewritten as

Ξ
− 1

2 (q)
i MΞ

1
2 (q)
j = Ξ

1
2 (q)
i NΞ

− 1
2 (q)

j ∀q , (24)

which is equivalent to

MΞ
(q)
j = Ξ

(q)
i N ∀q . (25)

(25) can be simplified into M ′T
(q)
j = T

(q)
i M ′ ∀q, where

T
(q)
i = 〈Ξi〉−

1
2 Ξ

(q)
i 〈Ξi〉−

1
2 , (26)

and M ′ = 〈Ξi〉−
1
2M〈Ξj〉

1
2 (analogously for index j) so that

〈T i〉 = I .
We now introduce a Lemma. This lemma and its proof

can be found in Murota et al. [11, Lemma A.4].

Lemma 1. Let {R(q)}Qq=1 and {P (q)}Qq=1 be two sequences
of Q > 2 positive-definite symmetric matrices of size p × p
and r× r, respectively. Assume that both sequences are JBD-
irreducible. Then, the equation

MR(q) = P (q)M ∀q (27)

for a p × r matrix M has a non-zero solution only if r = p
and that solution must be proportional (i.e., up to a scalar
factor) to a p× p orthonormal matrix.
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By identifying P (q) with T
(q)
i and R(q) with T

(q)
j , and

applying Lemma 1, it turns out that for mi 6= mj , HΞ is
always positive-definite and symmetric. For mi = mj , HΞ is
not positive-definite if and only if there exists an orthonormal
matrix O such that

OT
(q)
j = T

(q)
i O ∀q . (28)

Eq. (28) defines an orthogonal equivalence relation between
T

(q)
i and T

(q)
j . By rewriting (28) explicitly we obtain

O〈Ξj〉−
1
2 Ξ

(q)
j 〈Ξj〉−

1
2 = 〈Ξi〉−

1
2 Ξ

(q)
i 〈Ξi〉−

1
2O ∀q ,

where 〈Ξj〉−
1
2 Ξ

(q)
j 〈Ξj〉−

1
2 is the whitened version of Ξ

(q)
j ,

and similarly for Ξ
(q)
i . By changing sides, the latter equation

can be rewritten as

Ξ
(q)
j = 〈Ξj〉

1
2O†〈Ξi〉−

1
2 Ξ

(q)
i 〈Ξi〉−

1
2O〈Ξj〉

1
2 ∀q .

This is equivalent to normalizing Ξ
(q)
i by 〈Ξj〉

1
2O†〈Ξi〉−

1
2 .

However, since 〈Ξj〉 and 〈Ξi〉 are in fact arbitrary symmetric
positive-definite matrices, then 〈Ξj〉

1
2O†〈Ξi〉−

1
2 can be any

invertible matrix. We summarize the results of this section in
Theorem 1, which also replaces Ξ

(q)
i and Ξ

(q)
j with R

(q)
S,ii and

R
(q)
S,jj , respectively.
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