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ABSTRACT

Compressive sensing proposes simple compression of sparse
data at the expense of difficult data reconstruction. We focus
here on the opportunities in terms of information recovery
within the compressed data space, thus avoiding the expen-
sive data reconstruction step. Specifically, we study here how
the clustering ability of a dataset is affected by random pro-
jections. The proposed result has the advantage to give statis-
tical insights for low dimensions, where traditional results are
to no avail. Experiments show that it is possible to achieve
high compression rate while preserving clustering abilities, at
a low computational cost.

Index Terms— Random embeddings; Compressive Sens-
ing; Clustering

1. INTRODUCTION

It is now well-known that compressive sensing (CS) enables
the possibility to reconstruct a signal that has been projected
on am×N ,m << N matrix under the condition that the sig-
nal admits a sparse representation on a known dictionary, that
is when the number of significant representation coefficients
is low [1–5]. Furthermore, this is achievable when the matrix
is drawn from a random process [6, 7]. The major drawback
of CS is that the reconstruction process requires complex al-
gorithms [8–10] and the a priori knowledge of the sparsity
inducing basis.

However, in many applications, the final objective is not
signal reconstruction, but information retrieval, such as event
detection or signal classification. For example, spikes classifi-
cation is an essential step of intracortical neural data process-
ing [11]. In this application, the idea of a simple compression
system is appealing, since the hardware resources (in terms
of size, available power) can be very limited in the case of
embedded (or implanted) systems.

CS has shown [1, 6] that a random subspace projection
holds all the signal information when the signal is sparse.
The next question is: is it possible to maintain classification

and clustering ability in the compressed space? Dasgupta
[12, 13] has investigated the problem, and found that ran-
dom projections of highly eccentric Gaussian mixtures make
them become more spherical. The way the separability (and
thus clustering ability) reacts to the projection is investigated
and described in [12]. Others [14, 15] have proposed methods
that perform multiple random projections and clustering, and
combine the multiple results to enhance the final clustering.

Random projections also have an edge on other dimen-
sionality reduction methods such as PCA [16], as it is a lin-
ear, non-adaptive method, has low processing power require-
ments and makes no assumption on the criterion of interest.
Using random binary matrices, the computation is even sim-
pler since there is no floating point operation required, if the
signal is sampled as integer values.This can be seen as a low
computational cost compression method, and thus is interest-
ing for sensor applications where power is scarce. In these
cases, methods like PCA or those presented in [14, 15] are
not helpful.

In section 2, we introduce some mathematical concepts,
then in section 3 we discuss the possibility of using binary
matrices and how it can be applied to cases where m and N
are not large, with corresponding experimental results shown
in section 4.

2. MATHEMATICAL BACKGROUND

In order to maintain equivalent classification performance in
both the original and compressed spaces,it is necessary to pre-
serve the critical relationship used in classification. For many
clustering methods, the (Euclidean) distance between points
is that criterion: the k-means algorithm uses distances, as well
as methods based on the graph Laplacian [17, 18]. To charac-
terize how the distances are modified by random projections,
we introduce distortion that quantifies how close to isometric
the projection is. This is very close to the concept of Re-
stricted Isometry Property (RIP) used in CS literature [19].

Definition 1 Given Φ a m × N matrix representing an em-
bedding from RN into Rm, it has a distortion δ > 0 with
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probability P if for all x ∈ RN , the following is true with
probability at least P :

(1− δ) ≤ ‖Φx‖
2
2

‖x‖22
≤ (1 + δ) (1)

The main result about random embeddings distortion is
due to Johnson and Lindenstrauss [20] (which can also be
used to prove the RIP for random matrices [21]). We will
retain the following formulation of the Johnson-Lindenstrauss
(JL) lemma as exposed in [22]:

Lemma 1 Let Q be a finite collection of #Q points in RN .
Fix 0 < ε < 1 and β > 0. Let Φ be a random orthoprojector
fromRN toRm (i.e. am×N matrix with orthonormal rows)
with

m ≥
(

4 + 2β

ε2/2 + ε3/3

)
ln #Q. (2)

If m ≤ N , then with probability exceeding 1− (#Q)−β , the
following statement holds: for every x, y ∈ Q,

(1− ε)
√
m

N
≤ ‖Φx− Φy‖2
‖x− y‖2

≤ (1 + ε)

√
m

N
. (3)

The choice of having an orthoprojector leads to the com-
paction factor

√
m
N . However, simply renormalizing Φ by a√

N
m factor, eq. (3) becomes

(1− ε) ≤ ‖Φx− Φy‖2
‖x− y‖2

≤ (1 + ε), (4)

and the compaction is avoided. We will keep to such normal-
ization for the rest of the article.

Note that eq. 4 is not equivalent to eq. 1, which involves
squared norms. However, if δ < 1, we have the following
relation:

(1)⇒ (1− δ) ≤ ‖Φx‖2
‖x‖2

≤ (1 + δ)⇔ (4). (5)

Conversely, if ε < 1, the following result may be easily
shown:

(4)⇔ (1− 2ε+ ε2) ≤ ‖Φx‖
2
2

‖x‖22
≤ (1 + 2ε+ ε2)

⇒ (1− 3ε) ≤ ‖Φx‖
2
2

‖x‖22
≤ (1 + 3ε). (6)

There is no direct equivalence but one can easily switch from
one equation to the other. From now on, we will keep using
ε and δ in order to make it easier to distinguish between the
two equations.

Figure 1 shows how the minimal value for m, as given
by lemma 1, evolves with the distortion ε, with probability
P > 0.5; mmin can be very high even for low values of tol-
erated distortion. Thus in the perspective of constructing a
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Fig. 1. Variation of the minimal number of projections
mmin =

(
4+2β

ε2/2+ε3/3

)
ln #Q as a function of ε, with such

β that P > 0.5 and for different values of #Q.

random compressive embedding with low distortion, the re-
sult of lemma 1 is granted only for large value of m ( and of
N as we want dimensionality reduction). The value of mmin

also depends on #Q. This is expected as the lemma is for-
mulated to characterize the ability of a projector to maintain
separation between any two signals (points in RN ) from Q.
The larger Q, the lower may be this separation ‖x− y‖.

3. DISTORTION PROBABILITY FOR BINARY
MATRICES

3.1. Proposed result

We will consider the following system: Φ is a m × N , m <
N column-normalized zero-mean binary matrix with matrix
element φi,j = ± 1√

m
, P (φi,j = 1√

m
) = P (φi,j = − 1√

m
) =

0.5. x ∈ RN is a signal (sampled signals lie in a subset of
RN thus the result still holds after sampling).

We propose the following result, which is a simplified ver-
sion of the ExRIP [23], where the matrix is chosen as binary
and there is no assumption on the distribution of x or its spar-
sity:

Proposition 1 Given Φ as defined above, x from a random
process and δ > 0, we have:

P

{∣∣∣∣‖Φx‖2‖x‖2
− 1

∣∣∣∣ ≤ δ} ≥ 1− 2

mδ2

1− E



N∑
a=1

x4
a

‖x‖4



 .

(7)

Sketch of proof: Let Z = ‖Φx‖
‖x‖ then compute E{Z2} = 1

and E{Z4} = 1 + 2
m

(
1− E

{∑N
a=1 x

4
a

‖x‖4

})
. These re-

sults depend on the properties of the binary matrix, namely
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E{φi,j} = 0 and E{φ2
i,j} = 1/m, as well as the indepen-

dence between the φi,j . The final result is then obtained by
applying the Bienaymé-Chebyshev inequality:

P{|Z2 − E{Z2}| ≤ δ} ≥ 1− E{Z
4} − E{Z2}2

δ2
.

The term E
{∑N

a=1 x
4
a

‖x‖4

}
is always positive and less than

1 (indeed,
∑N
a=1 x

4
a

‖x‖4
=

∑N
a=1 x

4
a∑N

a=1 x
4
a +

∑N
a=1

∑N
b=1,b6=a x

2
ax

2
b

),

so we can define a looser bound which no longer includes
dependence on the signal by setting this term to 0, i.e

P

{∣∣∣∣‖Φx‖2‖x‖2
− 1

∣∣∣∣ ≤ δ} ≥ 1− 2

mδ2
. (8)

Simulations show that for normally distributed random vec-
tors, the difference between (7) and (8) becomes smaller and
smaller as N grows. Using (5) in (7) and (8) leads to

P

{
(1− ε) ≤ ‖Φx‖2

‖x‖2
≤ (1 + ε)

}

≥ 1− 2

mε2

1− E



N∑
a=1

x4
a

‖x‖4



 ≥ 1− 2

mε2
. (9)

3.2. Comparison with Johnson-Lindenstrauss lemma

Similarly to figure 1, figure 2 shows the variation of the min-
imal value of m for eq. (2) and that induced by (8). If one
requires that the distortion remains low with high probability
(P > 0.95), both approaches lead to similar requirements for
the number of projections m. However, if the required P is
lower (0.5), the simple Bienaymé-Chebyshev (BC) approach
shows that a much smaller m may be satisfactory.

The following simulations were also performed to com-
pare the proposed result to lemma 1: x signals were drawn
from a normally distributed random process with mean 0 and
variance 1. Matrices were drawn from a Bernoulli process,
with p = 0.5 and normalized column-wise. The simulations
is run over 1000 signals and 1000 matrices. The probability
estimation is done by computing the proportion of (the mil-
lion) realizations when

∣∣∣‖Φx‖‖x‖ − 1
∣∣∣ ≤ ε is true.

As it can be seen on figure 3, in the case of small m (and
N ), our proposed bound is positive only for large value of ε.
However, it provides information that was not available the
Johnson-Lindenstrauss lemma, as the minimal value for m
is in the order of the hundreds (fig. 1). The bound is loose
(but this is expected as it uses the Bienaymé-Chebyshev in-
equality) and the simulated probability is much higher and it
is possible to have reasonnable distortion with high probabil-
ity. Note that (8) was used, and that with small N value, the
bound (7) would be slightly tighter.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
2

10
4

10
6

m
m

in

ε

 

 

JL − P>0.5

BC − P>0.5

JL − P>0.95

BC − P>0.95

Fig. 2. Comparison of minimal value of m to achieve prob-
abilities higher than 0.5 and 0.95, as a function of ε. The
proposed bound (BC) is derived from eq. (8) as mmin =

2
(1−P )ε2 , and compared to m defined by lemma 1 (JL), as in
figure 1 with #Q = 1000.
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Fig. 3. Computed probability bound according to (8) (full
lines), and estimated probability that

∣∣∣‖Φx‖‖x‖ − 1
∣∣∣ ≤ ε (dashed

lines), for several values (4, 6 and 10) of m. N was set to
32 but since equation (8) was used, it does not influence the
bound value.

4. EXPERIMENTAL RESULTS WITH SIMULATED
NEURAL SPIKES

We performed experiments on simulated neural spikes data,
using the data1 fully described in [24]. Figure 4 shows the
507 spikes as available in the data, with a color code corre-
sponding to the original class of the spike. In this example,
the dimensions m and N are small, but this is not a limitation

1http://www2.le.ac.uk/departments/engineering/research/bioengineering/
neuroengineering-lab/spike-sorting
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Fig. 4. Synchronized and superposed spikes, with color
scheme corresponding to cluster class (N = 32 samples per
spike).
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Fig. 5. (a): Projection on the first two principal components
of the spikes. (b): Projection on the first two principal com-
ponents of the compressed (m = 4, N = 32) spikes. The
circles indicate misclassified spikes and the color is then that
of the original cluster class.

of the method.
Performing PCA on the spikes allows to see three well-

separated clusters, as seen in figure 5 (a). Please note that
PCA is only performed for visualization convenience. The
experiment consists in projecting the spike traces on a m ×
N binary matrix and performing a k-means clustering on the
projected data. The classification results are then compared to
the true classes. The experiment was done for various values
of m, and repeated for 1000 different matrices.

To find the cluster centers automatically, we used a
method inspired by [25]: the principle is to build a mini-
mum spanning tree with euclidean distance, and forming
clusters by thresholding. The threshold limit was set to the
mean plus one standard deviation of the distances in the tree,
and minimal cluster size was set to #S/6, where #S is the
total number of spikes.

The results in table 1 show that it is possible to achieve
simple compression while keeping the clustering ability in
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Fig. 6. Average percentage of misclassified spikes as a func-
tion of the number of projections m, with N = 32.

most cases. The first line gives raw proportion of misclas-
sified spikes over the 1000 realizations, as shown in figure 6.
In our example, there are 507 spikes, so 0.02% corresponds
approximately to a single error. The second line shows the
proportion of realizations where the number of misclassified
spikes was lower than 0.5%, that is, at most 2 errors (fig. 5
(b)). Starting from m = 6, which corresponds to a compres-
sion ratio larger than 5, it happens with probability higher
than 90%, and the average error rate is less than 1%. The two
last lines deal with the number of clusters: it occurs often with
high compression rates that the number of clusters is less than
3 and usually, this is because two of them appear mixed in a
PCA and thus, they are not separable using distance between
points. However, when m = 10 (that is, a compression ratio
higher than 3), it never occurred.

The cost of the compression is only m × N additions,
thus the higher the compression rate, the lower the cost, but it
comes at the expense of clustering quality. Choosing m = 6
(i.e. a compression ratio of 32/6 ≈ 5.33) seems a good trade-
off between clustering performance and compression cost.

5. CONCLUSIONS AND FUTURE WORK

The aim of this communication was to provide an insight
in the trade-off between the minimum number of compres-
sive measurements and the probability of successful classifi-
cation when working directly in the compressed data domain.
We provided a simple probability bound for random embed-
dings distortion that gives results for low dimensional prob-
lems, which was not possible with the Johnson-Lindenstrauss
lemma. In larger dimensional cases, there is no improvement
but it is expected since the bound relies on the Bienaymé-
Chebyshev inequality, which is known to be loose. Exper-
iments showed that it is actually possible to compress low
dimensional data into lower dimensions with random binary
embeddings, at a low computational cost, and maintain clus-
tering results with the k-means algorithm. This gives an ex-
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Number of projections m 4 5 6 7 8 9 10 11 12
Average proportion of misclassified spikes 5.09% 2.38% 0.81% 0.48% 0.25% 0.07% 0.03% 0.02% 0.02%
Less than 0.5% misclassified 69.4% 83.1% 91.8% 95.2% 97.6% 98% 99% 99.6% 99.6%
Average number of clusters 2.855 2.934 2.979 2.988 2.994 2.999 3 3 3
Probability of having less than 3 clusters 14.3% 6.6% 2.1% 1.2% 0.6% 0.1% 0% 0% 0%

Table 1. Classification performance in function of the number of projections m, N = 32.

ample where it is possible to exploit CS-based ideas whilst
sparing the expensive reconstruction process. Future work
will attempt to extend the proposed approach to other cluster-
ing algorithms such as e.g. graph-Laplacian methods.
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